2025年中考数学总复习课件(山东省专用)14 第一部分 第三章 第二节 一次函数_第1页
2025年中考数学总复习课件(山东省专用)14 第一部分 第三章 第二节 一次函数_第2页
2025年中考数学总复习课件(山东省专用)14 第一部分 第三章 第二节 一次函数_第3页
2025年中考数学总复习课件(山东省专用)14 第一部分 第三章 第二节 一次函数_第4页
2025年中考数学总复习课件(山东省专用)14 第一部分 第三章 第二节 一次函数_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节一次函数第一部分基础复习·突破核心第三章函数链接教材基础过关考点一一次函数的定义1.一次函数的定义:若两个变量x,y之间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).2.正比例函数的定义:对于一次函数,当______时,一次函数就变为________(k≠0),这时,称y是x的正比例函数.b=0y=kx考点二正比例函数和一次函数的图象与性质正比例函数k的符号k__0k__0图象的大体位置经过的象限第______象限第______象限性质y随x的增大而____y随x的增大而____><

一、三二、四增大减小一次函数k,b的符号k__0,b__0k__0,b__0k__0,b__0k__0,b__0图象的大体位置经过的象限第___________象限第__________象限第_________象限第___________象限性质y随x的增大而____y随x的增大而____y随x的增大而____y随x的增大而____>>><

<

><

<

一、二、三一、三、四一、二、四二、三、四增大增大减小减小考点三确定一次函数的表达式1.常用方法:待定系数法,其一般步骤为(1)设:设函数表达式为__________(k≠0);(2)代:将____________代入函数表达式,解方程或方程组;(3)解:求出______的值,得到函数表达式.y=kx+b已知点的坐标k与b2.常见类型(1)已知两点确定表达式;(2)已知两对函数对应值确定表达式;(3)平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的表达式为__________,再把点________代入即可.y=2x+b(0,1)3.一次函数的平移(1)一次函数图象平移前后k值不变,或两条直线可以通过平移得到,则可知它们的k值相同.(2)若向上平移h个单位长度,则b值增大h;若向下平移h个单位长度,则b值减小h.

kx+b=0y=k1x+b1y=k2x+b2上方下方考点五一次函数应用的常见题型1.根据实际问题中给出的数量关系直接列出相应的函数表达式,解决实际问题.2.利用一次函数对实际问题中的方案进行比较.3.结合实际问题的函数图象解决实际问题.

√C

[自变量次数为2,不是一次函数,故A不符合题意;分母中含有未知数,不是一次函数,故B不符合题意;自变量次数为1,是一次函数,故C符合题意;分母中含有未知数,不是一次函数,故D不符合题意.故选C.]2.若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则(

)A.k<2 B.k>2C.k>0 D.k<0√B

[由题意,得k-2>0,解得k>2.故选B.]3.一根蜡烛长20cm,点燃后每小时燃5cm,则剩下长度y(cm)与燃烧时间t(h)之间的函数关系可用下列哪个图象表示(

)√B

[由题意,得y=20-5x.∵0≤y≤20,∴0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段.∵k=-5<0,∴y随x的增大而减小.故选B.]4.(鲁教版七上P162议一议改编)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是________.x=2

[∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴当x=2时,y=0,即2a+b=0,∴关于x的方程ax+b=0的解是x=2.]x=2考点突破对点演练命题点1一次函数的图象与性质【典例1】

(2024·甘肃临夏州)一次函数y=kx-1(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是(

)A.第一象限 B.第二象限C.第三象限 D.第四象限√A

[∵一次函数y=kx-1(k≠0)的函数值y随x的增大而减小,∴k<0,b=-1<0,∴该函数图象经过第二、三、四象限,不经过第一象限.故选A.]归纳总结

解决一次函数的图象与性质有关的问题,关键是明确一次函数y=kx+b中系数的作用:k的正负决定图象的倾斜方向及函数的增减性,|k|决定图象的倾斜程度.b决定图象与y轴的交点的位置(或图象的上下位置).

√B

[因为正比例函数的表达式为y=3x,所以y随x的增大而增大.又因为x1<x2,所以y1<y2.故选B.]2.(2024·山西)已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是(

)A.y1>y2 B.y1<y2C.y1=y2 D.y1≥y2√

√A

[∵点A(2,m)和点B(n,-6)关于原点对称,∴m=6,∴点A的坐标为(2,6).设正比例函数的表达式为y=kx(k≠0),∵点A(2,6)在正比例函数y=kx的图象上,∴6=2k,解得k=3,∴正比例函数的表达式为y=3x.故选A.]归纳总结

本题考查了关于原点对称的点的坐标以及待定系数法求正比例函数表达式,由点A,B关于原点对称,求出点A的坐标是关键.[对点演练]1.[图表信息题]已知y是x的一次函数,下表列出了部分对应值,则m=________.x012y1m53

2.(人教版八下例题)已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的表达式.

命题点3一次函数与方程(组)、不等式的关系【典例3】

(2024·福建厦门二模)如图,函数y=kx+b(k≠0)的图象经过点B(m,0)(m>1),与函数y=2x的图象交于点A,则不等式kx+b<2x的解集为(

)A.x<2 B.x<1C.x>1 D.x>2√C

[在y=2x中,令y=2时,则2x=2,∴x=1,∴A(1,2),由图可得:不等式kx+b<2x的解集为x>1.故选C.]归纳总结

一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标的取值范围.[对点演练]1.(2024·广东)已知不等式kx+b<0的解集是x<2,则一次函数y=kx+b的图象大致是(

)√B

[A.不等式kx+b<0的解集是x>-2,故本选项不符合题意;B.不等式kx+b<0的解集是x<2,故本选项符合题意;C.不等式kx+b<0的解集是x<-2,故本选项不符合题意;D.不等式kx+b<0的解集是x>2,故本选项不符合题意.故选B.]2.(2024·江苏扬州)如图,已知一次函数y=kx+b(k≠0)的图象分别与x,y轴交于A,B两点,若OA=2,OB=1,则关于x的方程kx+b=0的解为________.x=-2x=-2

[∵OA=2,∴一次函数y=kx+b(k≠0)的图象与x轴相交于点A(-2,0),∴关于x的方程kx+b=0的解为x=-2.]命题点4一次函数的应用【典例4】

(2024·陕西)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市.他驾车从A市一高速公路入口驶入时,该车的剩余电量是80kW·h,行驶了240km后,从B市一高速公路出口驶出.已知该车在高速公路上行驶的过程中,剩余电量y(kW·h)与行驶路程x(km)之间的关系如图所示.(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为100kW·h,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.

归纳总结

解此类问题的关键是结合题中信息读懂函数图象上关键点的实际意义,找出各个量之间的关系,获取相关信息,通过分析、计算得出所求问题的答案,常常用到待定系数法.[对点演练][图表信息题](2024·广东广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x/cm…232425262728…身高y/cm…156163170177184191…

(3)当x=25.8时,y=7×25.8-5=175.6(cm).答:脚长约为25.8cm时,估计这个人的身高为175.6cm.题号13524687910111213141516(说明:选择题每题3分,填空题每题3分,本试卷共65分)

1.(2024·新疆)若一次函数y=kx+3的函数值y随x的增大而增大,则k的值可以是(

)A.-2 B.-1

C.0

D.1D

[由题意,得k>0,观察选项,只有选项D符合题意.故选D.]课时分层评价卷(十)一次函数√题号135246879101112131415162.下列各点中,在函数y=-2x的图象上的点是(

)A.(1,-2) B.(1,1)

C.(-2,1) D.(1,4)√A

[当x=1时,y=-2×1=-2,∴点(1,-2)在函数y=-2x的图象上;当x=-2时,y=-2×(-2)=4,∴点(-2,1)不在函数y=-2x的图象上.故选A.]题号135246879101112131415163.已知一次函数y=kx-2的图象如图所示,则一次函数y=2x+k的图象大致是(

)√题号13524687910111213141516B

[∵一次函数y=kx-2的函数值y随x的增大而增大,∴k>0,∵一次函数y=2x+k的一次项系数大于0,常数项大于0,∴一次函数y=2x+k的图象经过第一、二、三象限.故选B.]题号13524687910111213141516

√x1n+m4y32n9题号13524687910111213141516

题号13524687910111213141516

√题号13524687910111213141516

题号135246879101112131415166.[跨学科](2024·山西)生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为(

)

A.y=7.5x+0.5 B.y=7.5x-0.5C.y=15x D.y=15x+45.5√尾长x/cm6810体长y/cm45.560.575.5题号13524687910111213141516

题号135246879101112131415167.[开放性试题](2024·甘肃)已知一次函数y=-2x+4,当自变量x>2时,函数y的值可以是

________________(写出一个合理的值即可).-2(答案不唯一)-2(答案不唯一)

[当x=3时,y=-2×3+4=-2(答案不唯一).]题号135246879101112131415168.(2024·上海)若正比例函数y=kx的图象经过点(7,-13),则y的值随x的增大而________.(选填“增大”或“减小”)减小

题号135246879101112131415169.将直线y=kx+3向上平移3个单位长度后经过点(1,4),则k的值是________.-2

[∵直线对应的函数表达式为:y=kx+3,∴向上平移3个单位长度后新的函数表达式为y=kx+3+3=kx+6,∵将直线y=kx+3向上平移3个单位长度后经过点(1,4),∴4=k+6,∴k=-2.]-2题号1352468791011121314151610.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx-2恰好把正方形ABCO的面积分成相等的两部分,则m=________.2

[∵直线y=mx-2恰好把正方形ABCO的面积分成相等的两部分∴直线必经过正方形的中心.∵点B的坐标为(4,4),∴中心为(2,2),代入y=mx-2中,得2=2m-2,解得m=2.]2题号1352468791011121314151611.[情境题](2024·内蒙古包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2题号13524687910111213141516(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?题号13524687910111213141516

题号13524687910111213141516(2)设碗的数量有x个,则2.4x+3.6≤28.8,解得x≤10.5,∴x的最大整数解为10.答:碗的数量最多为10个.题号13524687910111213141516

题号13524687910111213141516

题号1352468791011121314151613.(2024·四川南充)当2≤x≤5时,一次函数y=(m+1)x+m2+1有最大值6,则实数m的值为(

)A.-3或0 B.0或1C.-5或-3 D.-5或1√题号13524687910111213141516A

[当m+1>0,即m>-1时,y随x的增大而增大,∴当x=5时,一次函数y=(m+1)x+m2+1有最大值6,∴5(m+1)+m2+1=6,解得m1=0,m2=-5(舍去);当m+1<0,即m<-1时,y随x的增大而减小,∴当x=2时,一次函数y=(m+1)x+m2+1有最大值6,∴2(m+1)+m2+1=6,解得m1=-3,m2=1(舍去).综上,当2≤x≤5时,一次函数y=(m+1)x+m2+1有最大值6,则实数m的值为0或-3.故选A.]题号1352468791011121314151614.(2024·四川凉山州)如图,一次函数y=kx+b的图象经过A(3,6),B(0,3)两点,交x轴于点C,则△AOC的面积为________.9题号13524687910111213141516

题号1352468791011121314151615.(2024·黑龙江齐齐哈尔)领航无人机表演团队进行无人机表演训练,甲无人机以a米/秒的速度从地面起飞,乙无人机从距离地面20米高的楼顶起飞,甲、乙两架无人机同时匀速上升,6秒时甲无人机到达训练计划指定的高度停止上升开始表演,完成表演动作后,按原速继续飞行上升,当甲、乙无人机按照训练计划准时到达距离地面的高度为96米时,进行了时长为t秒的联合表演,表演完成后以相同的速度大小同时返回地面.甲、乙两架无人机所在的位置距离地面的高度y(米)与无人机飞行的时间x(秒)之间的函数关系如图所示.请结合图象解答下列问题:题号135246

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论