椭圆的教学设计_第1页
椭圆的教学设计_第2页
椭圆的教学设计_第3页
椭圆的教学设计_第4页
椭圆的教学设计_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

选修1-1《2.1.1椭圆及其标准方程》教学设计北京市京源学校田娟一、指导思想与理论依据1.新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。2.建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。二、教学背景分析1.教材分析解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。2.学情分析知识方面(1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;(2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战;(3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题;自身特征方面(1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。并且具备了初步的探索能力;(2)对数学概念的学习只是停留在表面,对概念的形成过程不重视,所以无法深刻理解;(3)对于较复杂的计算问题,往往不知如何动手或懒得动手,计算能力较弱。但他们同时又乐于小组合作学习,学习气氛浓厚;3.教学方法及手段新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,并以多媒体手段辅助教学,使学生经历实践、观察、交流、分析、概括等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人。根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持。三、教学目标及重难点1.教学目标知识与技能(1)掌握椭圆的定义;(2)理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程;过程与方法(1)经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;(2)通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。情感、态度与价值观在动手折纸得出椭圆的定义的学习过程中,培养学生思维的严密性;亲身经历椭圆标准方程的获得过程,感受数学的对称、简洁、和谐美,同时养成扎实严谨的学习习惯,增强学生战胜困难的意志品质和锲而不舍的钻研精神。2.教学重难点重点:椭圆的定义和椭圆标准方程的两种形式难点:椭圆的标准方程的建立和推导四、教学流程示意图

五、教学过程设计

方程推导

我们已经知道,在直角坐标平面上直线和圆都有相应的方程,从而就可以用代数的方法来研究它们的几何性质、位置关系等。那么如何求椭圆的方程呢?

【提问】求圆的方程的一般步骤是什么?

建系设点:【提问】根据简单和优化的原则,如何建立平面直角坐标系?

以两定点、所在直线为轴,线段的垂直平分线为轴,建立直角坐标系(如图).设.,为椭圆上的任意一点,则、.又设与、的距离的和等于.②

集合表示:由椭圆定义得:动点M的集合为:

坐标化:用含有动点坐标的方程表示:.

化简:预案:移项后两次平方法引导学生观察椭圆图形和推导出的椭圆方程的系数,学生容易发现实际上对应图形中的特殊线段,不妨令其为,则有,类比由化简为截距式方程的方法将方程继续化简得到椭圆的标准方程【板书】椭圆的标准方程1.

焦点在轴上的椭圆的标准方程:,焦点是、.这里。【提问】如果焦点在轴上,椭圆的方程又是什么呢?2.

焦点在轴上的椭圆的标准方程:焦点是、.这里。

引导学生比较归纳出两种标准方程的区别。总结归纳:在两种标准方程中,因为,所以可以根据分母的大小来判定焦点在哪一个坐标轴上。

【练习】人教B版例2求下列方程表示的椭圆的焦点坐标:(1)(2)

建系设点②

集合表示③

坐标化④

化简⑤

证明(一般省略)

回答

建立如图坐标系:

小组交流,尝试化简

观察方程的特点,得出标准方程。

记笔记

思考交流,并回答

思考交流,并回答

通过对必修2中坐标法研究曲线性质方法的复习,让学生认识到本节课研究椭圆的一般方法和思路。在标准方程的推导过程中,问题的设问让学生认识到在推导方程的过程中进行等价变形的重要性,培养严谨的数学演算习惯。提高运算能力,养成不怕困难的钻研精神;感受数学的简洁美、对称美

让学生对椭圆的两种标准方程有个清晰的认识,体会问题的本质所在,只是位置的不同,图形是一样的,为后面的应用做准备

本题是根据教学需要将课本的例2前置的一道题,目的是加深学生对椭圆的焦点位置与标准方程之间关系的理解,明确不是标准方程的要先将方程化为椭圆的标准方程,确定出,再求出c。从而进一步认清椭圆标准方程两种形式,再次突破本节课的重点——椭圆标准方程的两种形式。初步应用

例1

根据下列条件,求椭圆的标准方程。(1)

两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P与两焦点的距离的和等于8;(2)

两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点()(3)

已知椭圆的焦距是6,椭圆上的一点到两焦点距离的和等于10

学生思考后回答例1(1)(2)小题是教材上的例题,设计目的:一是进一步理解椭圆的焦点位置与椭圆标准方程的关系(注意焦点在轴还是在轴上),掌握运用待定系数法求解椭圆标准方程的方法;二是加深学生对椭圆定义的理解与运用,学会运用椭圆定义求解椭圆标准方程。(3)小题是对(1)(2)的变式题,其目的是对学生进行分类讨论数学思想的渗透,达到拓展知识、提高能力的目的。

阅读课本33页内容。

阅读课本椭圆的生成方式有多种,课本33页给出了我们另外一种生成的方式,学生通过阅读这部分内容,再一次感受椭圆的形成过程。

目标检测

1.

已知椭圆的焦点坐标为和,且经过点,求椭圆的标准方程。(课本练习A第1题(5))2.

设是椭圆上一点,是椭圆的焦点。如果点与焦点的距离为4,那么点与焦点的距离是多少?(课本练习A第2题的改编题)

学生独立完成这两道题考查的知识点和方法与本节课所讲解的内容完全一致,通过这两个小题对学生进行检测,一方面可以加深学生对本节课的理解,同时也能够及时反馈出学生对本节课知识和方法的落实情况,便于及时调整。

归纳小结

【课堂总结】1.

知识层面2.

方法层面3.

学习反思学生小结归纳,不足的地方老师补充说明。让学生自己小结,不仅仅总结知识,更重要的是总结数学思想方法,这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯。

作业布置1.必做题:课本练习A

1,练习A

1(1)(2)(3)(4)2.思考题:(2)已知F1、F2是椭圆的两个焦点,过F1的直线交椭圆于M、N两点,则的周长为

;(3)若方程表示焦点在轴上的椭圆,则的取值范围是

.

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。六、学习效果评价设计1.已知椭圆的焦点坐标为和,且经过点,求椭圆的标准方程。(课本练习A第1题(5))2.设是椭圆上一点,是椭圆的焦点。如果点与焦点的距离为4,那么点与焦点的距离是多少?(课本练习A第2题的改编题)题目12得分正确错误正确错误6040学习效果评价标准:题目12标准正答率等级正答率等级85%

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论