




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ofAgentic
Supervision
TheFuture
ΛRFΛCT
AIISABOUTPEOPLE
WEACCELERATEDATAANDAIADOPTIONTOPOSITIVELYIMPACT
PEOPLEANDORGANIZATIONS.
25
COUNTRIES
1700
EMPLOYEES
+1000
CLIENTS
Artefactisagloballeaderinconsultingservices,specializedindatatransformation
anddata&digitalmarketing,fromstrategytothedeploymentofAIsolutions.
Weareofferingauniquecombinationofinnovation(Art)anddatascience(Fact).
STRATEGY&TRANSFORMATION|AIACCELERATION|DATAFOUNDATIONS&BI
IT&DATAPLATFORMS|MARKETINGDATA&DIGITAL
Executivesummary
LastFebruary,wepublished“TheFutureofWorkwithAI”,ourfirststudyonAgenticAI.WefoundthatalthoughAIagentswillreplacehumansontediousandrepetitivetasks,anewtypeofworkwillappear:AgenticSupervision.Duringtheindustrialrevolution,machinesreplacedhumansonmanualtasks,butnewjobsappearedsuchasmachinepurchasing,operationalsupervisionandmaintenance.WithAgenticAI,cognitivejobswillbereplacedbyotherhigher-levelandmoreproductivecognitivejobs.ThisstudyintendstodeepdiveintotheearlydaysofAgenticSupervisionandtodrawtheoutlineoftheFutureofSupervisionintermsofAgentlifecyclemanagement,governanceandsupervisiontooling.
TogatherthecurrentstateofAgenticSupervision,wein-terviewed14enterprisesand5ArtefactAgenticProductManagers&Engineers.WealsocontactedkeyAgenticSupervisionproviders,includingmajorData&AIplatformswithyearsofsoftwaresupervisionexperience(suchasGoogleandMicrosoft)aswellasspecializedstart-ups(WB,Giskard,RobustIntelligence…).
ThefirstinsightwefoundisthatwhileAgenticSupervisionextendstheprinciplesestablishedinDevOps(softwareop-erations),DataOps(dataoperations),andMLOps(MachineLearningoperations),itdramaticallyincreasesthedemandforrobustgovernancetokeepAIAgentsalignedandundercontrol.Indeed,with“softwarethatstartstothink”,unseenrisksareemerging,suchashallucination,reasoningerrors,inappropriatetone,intellectualpropertyinfringementorevenpromptjacking.Mitigatingthesereliability,behavioral,regulatoryandsecurityrisksnowrequiresgovernancethatisnotonlymorerigorousbutalsobroaderthanwhathaspreviouslybeenappliedtotechproducts.
Thismarkedlygreaterneedforgovernanceisthechal-lengethatmaydefinetheemergingoperationalparadigmof“AgentOps”.Interestingly,AgentOpswillneedtobuilduponeachorganization’sexistingDevOps,DataOps,andMLOpsfoundationsandgovernance,andcompanieslag-
RFΛCT
THEFUTUREOFAGENTICSUPERVISION
“WefoundthatalthoughAIagentswillreplacehumansontediousandrepetitivetasks,anewtypeofworkwillappear:
AgenticSupervision.”
gingintheseoperationaldomainswillhavetobridgeanygapsintheseareaswhilesettingtheirAgenticgovernanceframework.
Thesecondmajorchallengeidentifiedbyourinterview-eesistheneedtostrengthentheirAIsupervisiontooling.ManyarecurrentlyrelyingonexistingRPAandDev/Data/MLOpstools,orexperimentingwithcustom-builtsolutionsastheysearchformoresustainable,long-termoptions.Theabundanceofearly-stagetoolsandtheneedtoenvisionacohesive,end-to-endsupervisionsystemthatintegratesmultiplecomponents,promptedustoexplorethetechno-logicaldimensionsofagenticsupervisioningreaterdepth.AswithanyTechOpsframework,AgentOpssupervisioninvolvesthreefundamentalstages:(1)Observe,(2)Evaluate,and(3)Monitorandmanageincidents.Whilethethirdstagerepresentsthelargestsupervisioneffortandtime,thefirsttwoareessentialtoensuringeffectiveriskmanagement.Withnewcategoriesofriskstomonitorandconsequently,newlogs,traces,andevaluationmechanismstoestablish,it’sclearwhyintervieweesconsistentlyemphasizedtheneedfortherighttoolstosupportscalableandreliablesupervision.
3
EXECUTIVESUMMARYTHEFUTUREOFAGENTICSUPERVISION
“Supervisionshouldnotbeanafterthought,itmustbe
embeddedearlyintheagent’sdesignanddevelopment.”
Ourresearchintoagenticsupervisiontoolsrevealedthreekeyinsights.First,thereiscurrentlynoall-in-onesolutionavailable.MajorcloudproviderslikeGoogleandMicrosoftareactivelydevelopingandreleasingsupervisiontoolsandframeworksaimedatcoveringthefullspectrumofsupervisionneedsforteamsbuildingagentsonplatformssuchasVertexAI(Google)andCopilotStudio(Microsoft).Second,agentsupervisionfallsintotwocategories:pro-activeandreactive.Proactivesupervisionisappliedduringdevelopmenttotestagentsagainstdefinedscenariosor,inproduction,tocontinuouslyguardagainstemergingthreats,particularlyintheareaofsecurity,ortocollectaggregatedperformancedata.Itsgoalistoimproveagentbehaviorovertime.Reactivesupervision,ontheotherhand,focusesondetectingandhandlingliveincidents.Althoughbothtypesrelyonobservabilitytoolsandmayusesimilarevaluationmechanisms,theydiffersignificantlyindatasources,eval-uationgranularity,andresponsestrategies.Finally,ourthirdinsightisthatagenticobservability,evaluation,andriskmitigationremaincomplexandrapidlyevolvingdomains.Weanticipatesubstantialadvancementsinsupervisiontoolingoverthecomingyears.
Eachphaseoftheagenticsupervisioncycle;observe,evaluate,andsupervise,presentsitsownsetofchal-lenges.
Observabilityfirstrequiresanticipatingwhatdatatocapture,whichdependsheavilyonhavingaclearlydefinedevaluationandsupervisionstrategy.Withoutthisforesight,teamsriskeithercollectingtoolittleinformationorbeingoverwhelmedbyvast,unstructuredtracesthathindermanualrootcause
analysis.ToolslikeLangSmithandLangChainareincreas-inglyusedtostructureandstreamlinetheobservationofagentbehavior.AnothermajorchallengeliesintheopacityofLLMreasoning,whichmustbecounteredbydeliberatelydesigningagentarchitecturesandworkflowstoensuretraceabilityandtransparency.
EvaluationinagenticAIissignificantlymorecomplexthanintraditionalsoftwareordataqualityassessments.Wheredeterministictestsbasedonobservabilityqueriesaresuf-ficientinclassicalDevOpsandDataOps,agenticsystemsoftenrequireAItoevaluateAI.ThishasledtotheriseofLLM-as-a-judgetechniques;acounterintuitiveapproachwhereonemodelassessestheoutputofanother.Whilethisraisesconcerns(whytrustflawedAItojudgeflawedAI?),studiesshowitoftenproducesmoreconsistentandscalableresultsthanhumanreviewers.Nonetheless,acommonpainpointamongintervieweeswasthedifficultyofbuildingreliablegroundtruthdatasets,expert-curatedquestion-answerpairs,tobenchmarkagentresponses.Humanevaluatorstendtodisagreeandoftenlackcom-pletenessintheiranswers.
Finally,supervisionandmitigationfacechallengesaroundprioritization.Withagrowingnumberofmetricsandalerts,teamscanquicklybecomeoverwhelmed.Standardizedframeworksforalertingandmetricmanagementareamusttobringstructureandclaritytoagenticsupervision.
Onlyahandfuloforganizationshavesuccessfullyestab-lishedeffectivegovernanceandstandardsforagenticAI.Thosewithmaturesoftwareanddatagovernanceframe-
4ΛRFCT
EXECUTIVESUMMARY
“AgenticSupervisionis
theFutureofWorkwithAI!”
workshavehadaheadstart,benefitingfromstrongfoun-dationsandawell-establishedcultureofobservabilityandsupervision.Weobservedthatleveragingexistingsoftware,RPA,anddatasupervisionpractices,processes,andtoolscansignificantlyaccelerateprogress.However,thekeychal-lengeliesinadaptingthesetothedynamicrisksandevolvingtoolsetsspecifictoagenticAI,andinbuildingadedicated,future-readygovernanceframework.Relyingtoolongonlegacyapproaches,includingdeterministiclogicandcus-tom-builttools,canbecomeaconstraint,limitingteamstonarrow,tightlycontrolledagenticworkflowsandpreventingtheadoptionofmoreautonomous,AI-orchestratedagents.
Allintervieweesemphasizedthatthekeytoeffectiveagenticsupervisionisanticipation.Supervisionshouldnotbeanaf-terthought,itmustbeembeddedearlyintheagent’sdesignanddevelopment.Settingupobservabilityandevaluationmechanismsonlyoncetheagentisinproductionistoolate.Identifyingflawsatthatstageoftenmeansreworkingtheentireagent,whichisfarmorecostlythaninvestinginrobustsupervisionfromthestart.
Thegoodnewsisthatavarietyoftestedtoolcombinationsandemergingagenticframeworksarealreadyavailable.WestronglyrecommendthatenterpriseAIgovernanceteamsdefinetheirownstandardizedframeworkandtoolsettobeappliedacrossallagenticdevelopment.Thisbecomesevenmorecriticalasagentsbegintointerconnect,makingsys-tem-widecontrolandsupervisioninteroperabilityessential.
Tosucceed,AIgovernancemustalsoaligncloselywithstrongITandDataGovernancepractices,sinceagents
RFΛCT
THEFUTUREOFAGENTICSUPERVISION
relyonenterprisedataandITsystemsto‘think’andtake‘action.’JustasITanddatagovernancerequiredbusinessinvolvementinthepast,oneofthekeytakeawaysfromourstudyisthatagenticgovernancewilldemandevendeeperbusinessengagement.
Unliketraditionalsoftwareordatasupervision,typicallyhandledbyITordatateams(andinthemostmatureor-ganizations,byabusiness-leddatagovernancenetwork),agentsupervisionwillneedtobebusiness-owned.GiventheinherentunpredictabilityofAIagents,incidentresponsesof-tenrequiredomainexpertise.Asaresult,thebusinessmustbeactivelyinvolvednotjustinmonitoring,butinframingagentbehaviorfromtheoutset.Thisrepresentsasignificantculturalshift:agenticAIblursthelinesbetweenIT,data,andbusiness,andwillrequirenewwaysofworkingbasedoncross-functionalcollaboration.AgenticSupervisionistheFutureofWorkwithAI!
FlorenceBénézit
ExpertPartnerData&AIGovernance
HananOuazan
ManagingPartner,LeadGenerativeAI
5
THANKS&ACKNOWLEDGMENTSTHEFUTUREOFAGENTICSUPERVISION
Methodology
ThisstudyisbasedonaqualitativeresearchapproachdesignedtoexploretheemergingchallengesandgovernancepracticessurroundingtheearlyimplementationsofautonomousAIagentsinorganizations.Bycombiningexpertinterviewswithanin-depthanalysisoftheevolvingtechnologicallandscape,weaimedtomapcurrentpractices,identifyoperationalneeds,andunderstandthevaluepropositionsofavailablesolutionsforagentobservability,evaluation,andsupervision.
Weconducted20+interviewswithprofessionalsdirectlyinvolvedinthedeployment,governance,ortechnicaldevelopmentofagenticsystems.Theseincluded:
—AIandDataLeaders,suchasChiefDataOfficers,HeadsofAI,andDataPlatformDirectors,whosharedtheirstrategicvisiononagentimplementation,riskmanagement,andtheevolutionofdatainfrastructure.
—ProductManagersandInnovationExecutiveswhoofferedinsightsintooperationalusecases,organizationalreadiness,andtheshifttowardagent-centricarchitectures.
—Compliance,Security,andITGovernanceExperts,
whoprovidedcriticalinputonregulatoryexpectations,ethicalrisks,andtheemergingneedforreal-timecontrolmechanismstailoredtoAIagents.
—FoundersandChiefsofScienceofAItoolingcompanies,
whosefeedbackhelpedassessthestateofthemarketacrossthreekeyfunctions:observability,evaluation,andactivesupervisionofAIagents.
Intervieweesrepresentedadiverserangeoforganizations,includingmajorcorporations(insectorssuchasenergy,telecom,pharmaceuticals,andluxury),globaltechplayers,andhigh-growthstartups,ensuringarichandnuancedunderstandingofthetopic.
Inparallel,weconductedasystematicreviewofoveradozentoolsandplatformsofferingcapabilitiesrelevanttoagentgovernanceincludingLangfuse,LangSmith,DeepEval,CopilotStudio,VertexAI,Ragas,Weights&Biases,PRISMEval,DeepEval,RobustIntelligence,Giskard…Eachsolutionwasanalyzedusingadedicatedframeworkthatcross-referencedthreedimensionsofquality(Reliability,BehavioralAlignment,Security)withthreestagesofsupervision(Observation,Evaluation,ActiveSupervision).
Byintegratingreal-worldpractitionerfeedbackwithastructuredtechnologicalbenchmark,thisstudyaimstoofferapragmaticandforward-lookingperspectiveonhowcompaniescanresponsiblyscaleagenticAIsystems.
SpecialThanks&Acknowledgments
ENTERPRISEINTERVIEWEES
YoannBersihand,VPAITechnology,SCHNEIDER
ArthurGarnier,ITChiefofStaff&DataScientist,ARDIANJean-FrançoisGuilmard,CDO,ACCOR
PaulSaffers,DeputyCDO,VEOLIA
AlexisVaillant,HeadAutomatisation,ORANGE
LeoWang,DataProtectionOfficer,LOUISVUITTONCHINA
AGENTOPSSTACKINTERVIEWEES
AlexCombessie,Co-founder&Co-CEO,GISKARD
SaloméFroment,AccountDirectorFrance,WEIGHTS&BIASESÉricHoresnyi,HeadofAIGo-To-Market,GOOGLEFRANCE
AminKarbasi,SeniorDirector,CISCOFOUNDATIONAIRESEARCH(FormerChiefScientistatRobustIntelligence)
Jean-LucLaurent,GenerativeAI/MLSpecialist,GOOGLE
PierrePeigné,Co-founderandChiefScienceOfficer,PRISMEvalChrisVanPelt,Co-founder&CISO,WEIGHTS&BIASES
MarcGardette,DeputyCTO,MICROSOFTFRANCE
6ΛRFCT
TABLEOFCONTENTSTHEFUTUREOFAGENTICSUPERVISION
8
Introduction
9I—AgenticAIrisksareshakingupthetech
governance&supervisiongame.
10AgenticAIorwhensoftwarestartstothink.
14Newtech,oldproblems:whygovernanceisacontinuum.
18Nomorewatchingfromthesidelines:AgenticAIputssupervisioninbusinesshands.
24II—ThenewAgentOpsstack:tests,guardrailsandfeedbackloops.
25Pre-productiontestingmustembracevariabilitytoensureagentreadiness.
35Guardrailsprotectoperationsbymanagingrisksduringagentexecution.
41Agentsupervisionspansfromimmediateruntimeactionstofutureplanningdecisions.
45III—SecureandaccelerateAgenticAIwith
standards&globalgovernance.
46Technicalteamsneedclearstandardstobuildanddeployagentsefficientlyandresponsibly.
50Scalingmulti-agentsystemsrequiressharedprotocolsforinteroperabilityandmanageability.
55BusinessteamsneedtoorganizeglobalAIgovernanceandsupervisionprotocols.
58
Conclusion
RFΛCT7
INTRODUCTIONTHEFUTUREOFAGENTICSUPERVISION
Introduction
If,asshowninourpreviousstudy,thefutureofworkwithAIliesinsupervisingAIagents,thenitisessentialtoensurethatthisnewformofworkbecomesabetterexperiencethanthecognitivetasksitreplaces.Manu-allyoverseeingeverystepanddecisionmadebyanagentwouldquicklybecomeatedious,evenmoredrainingtaskthansolvingtheproblemdirectlyourselves.So,howcanwedobetter?Thisstudyexploreswhat’strulyatstakeinagenticsupervisionandhowearlytoolsarebeginningtoshapewhatthisnewtypeofworkmightlooklike.
Wetakeabroadviewofwhatsupervisionmeans.Itstartswithsettingupautomatedloggingandtracingsystems.Italsoinvolvesdesigningevaluationandalert-ingframeworksthatguidethefinalandmostvisiblestep:takingaction(manuallycorrectingmistakes,relaunchinganagentictaskwithbettercontext,mitigatingincidents,identifyingareasforimprovement,andprioritizingde-velopmentefforts).Supervisingagentsmirrorsmanyaspectsofhumancollaboration:definingjobdescriptions(agentobjectives),recruiting(designinganddeployingnewagents),trainingandcoaching(monitoringandup-
datingbehavior),andongoingcollaboration(providingin-putsandsupporttoagents,butalsolearningfromagentsandthebusinesscontexttheycollectintheirmemory).
Webelievethatthesupervisionofasingleagentwillnotfalltojustoneperson.Agenticsupervisionisinherentlymultidimensional.Forinstance,businessoperationsmayoverseerelevanceandaccuracy;ethicsteams,compli-anceandtone;businessleaders,valueandeconomicviability;andcybersecurityteams,safetyandmaliciousattackriskmitigation.
Thisstudyfocusesonbestpracticesforagenticgov-ernance,supervisionprocesses,andthesupportingtools.Whilethisdomainisstillemergingandlikelytoevolvesignificantly,wealsoobservestrongcontinuitywithestablishedpracticesfromsoftware,RPA,data,andMLsupervision.DespitetheuniquechallengesposedbytheprobabilisticbehaviorofAIagents,manystablefoundationsalreadyexist.Embracingthesefoundationsnowiscriticaltoensuringthesuccessofearlyagenticinitiatives.
GeneratedwithChatGPT
8RFCT
THEFUTUREOFAGENTICSUPERVISION
I
AgenticAIrisksareshakingupthetechgovernance&
supervisiongame.
10
I.A
—AgenticAIorWhenSoftwareStartstoThink.
14I.B—NewTech,OldProblems:WhyGovernanceIsaContinuum.
18I.C—Nomorewatchingfromthesidelines:AgenticAIputssupervisioninbusinesshands.
9
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
I.AAgenticAIorWhenSoftwareStartstoThink.
AIagentsradicallydifferfromsoftware:theyareautonomousandgoal-driven.
Traditionalsoftwarefollowspredeterminedlogic,andchat-botsoperatewithinrigidtemplatesanddeterministicdeci-siontrees.Incontrast,agenticAIsystemsgomuchfurther:theyinterpretcontext,planactions,andexecutetasksbychainingdecisionsacrossvarioustoolsandAPIs.Theseagentsdon’tsimplywaitforusercommands,theypursueobjectives,evaluateintermediateoutcomes,andadjusttheirstrategiesonthefly.Thisautonomousreasoningmakesthemfeellessliketoolsandmorelikecollaborators.UnlikeRPAbots(RoboticProcessAutomation)orevenstandalonelargelanguagemodels(LLMs),agenticAIsys-temsaregoal-orientedandtask-complete,builttoachieveanoutcome,notjustfollowinstructionsorgeneratethemostlikelynextresponsetoaprompt.
Thismarksafundamentalshiftinthesoftwaredevelop-mentparadigm.Insteadofhardcodinglogicupfront,youdefinegoalsandsetconstraintsandtheagentautono-mouslyconstructsitsownplan.Itmaychainprompts,callAPIs,search&querydatastores,orevencreatesubgoalsasneeded.Ratherthanfollowingafixedpath,thesystemcontinuouslyadaptsitsactionstowhat’smostlikelyto
succeed.Whilethisopensthedoortomajorproductiv-itygains,italsodisruptstraditionalgovernancemodels:Howdoyoutestasystemwhoseoutputschangewitheveryrun?Howcanyoucontrolbehaviorthatvariesovertime,withoutresortingtoconstanthumanoversightandintervention?
“What’sdifferentwithagentsisthattheydon’tjustfollowascript.Theyinterpretinstructions,decidehowtoachievegoals,andofteninfermorethanyoutoldthemto.Thatopensupanewlayerofunpredictability.You’renotsuper-visingcode,you’resupervisingintent.”
ArthurGRENIER
ITChiefofStaff&SeniorDataScientist
ARDIAN
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
AgenticAIcan’tbemade100%predictableandcallsforgovernancereinventiontobalancevalueandrisks.
Thefirstgenerationofautomationtools,includingRPA,macrosandrule-basedbots,offeredpredictabilitybyde-sign.Theymimickeduseractionsstepbystep,withinwell-definedworkflows.EventraditionalMachineLearningsystems,despitetheirinternalcomplexityandprobabilisticnature,operatedwithinclearboundaries:structuredinputsandoutputs.Incontrast,LLMsacceptunstructuredtextinputsandcangenerateawiderangeofoutputs,ofteninunpredictableformats.AgenticAIexacerbatesbehaviorcomplexityevenfurther,agentsnavigatedynamicenviron-ments,drawonmultipleknowledgesources,andadapttheiractionsautonomouslyinrealtime.Theirbehaviorisinfluencednotjustbytrainingdataorpredefinedrules,butbyhumanprompts,toolusage,memorystate,andimplicitknowledgebakedintotheirfoundationmodels.
Legacygovernancemodelsreliedondeterministicin-put-outputcontrol:supplytestdata,verifyresults,tracebugs.Butagenticsystemsblurthatline.Asinglepromptmightleadtohallucinations,multipleAPIcalls,toolinterac-tions,ormemoryrecalls,allpotentiallydifferenteachtime.Thisabstractionbetweenintentandexecutioncreatesagovernancecontrolgapintermsoftechnicalvisibility,pro-cessreadinessandaccountability:rulescanbebypassed,edgecasesoverlooked,andbehavioralregressionsmaygounnoticeduntiltheycauserealissues.
Asaresult,supervisingagentsshiftstheeffortweightfromverifyingcodetoobservingpairsofinputsandoutputs,andpiecingtogethertheirdecision-makingret-rospectively.Asforsoftwareanddatamanagement,thisobservation&analysisefforthappensbothoffline,beforedeploymentongroundtruthorsyntheticdata,andonlineonproductiondata.Allintervieweesstressedtheimportanceofsettingupagenticsupervisionupfronttorigorouslytestagentswhilebeingdevelopedbutalsotoanticipateonlinesupervisionaccountabilityandreme-diationprocesses.
“Unliketraditionalsoftware,AIdevelopmentisfundamentallyprobabilistic.CodeisnolongerthecoreIP,learningis.Whatmattersisknow-ingwhatworks,whatdoesn’t,andwhy.”
ChrisVanPelt
Co-founder&CISO
10ΛRFCTRFΛCT11
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
Thisunpredictabilityshiftintroducestheneedforlarge-scale,statisticalvalue&riskevaluation.
Asaconsequenceofthisunpredictability,theemergenceofagenticAIhasintroducedaprofoundcontrolchallenge:traditionalQA(QualityAssessment)methodsarenolongeradequate.Previously,ahandfulofunittestsmatchingfixedinputstotheirexpecteddeterministicoutputswasenoughtovalidatehardcodedlogic.Incontrast,AIagentsnowrequiretestingacrossabroadspectrumofpossibleinputs,witheachtestscenariorigorouslyandrepeatedlyruntoaccountfortheirnon-deterministicbehavior.Ontopofthat,evaluatingtheirperformancemeansinterpretingun-structuredandvariabletextoutputs,whichmakesitmuchhardertoconsistentlydefineandmeasurewhat“quality”reallymeans.Outputqualitymayneedtobeassessedalongmultipledimensions,includingfactualaccuracy,completeness,security,andalignmentwithuserintent.
Oncequalityisassessed,asecondchallengeemerges:identifyingtherootcausesofagentfailurestosupportim-provementormanagerunincidents.Thisrequiresdetailed,transparentloggingoftheagent’sreasoningprocess,accessibletoadiversesetofsupervisingstakeholders;developers,complianceofficers,businessowners,anddomainexpertsalike.
“Theneedtoclosethissupervisionandgovernancegaprisesveryearlyintheenterpriseagenticjourney.”
Theneedtoclosethissupervisionandgovernancegaprisesveryearlyintheenterpriseagenticjourney.Asagenticsystemsbegininterpretingcomplexbusinesscontextsandtakingautonomousdecisions,therisksandresponsibilitiesgrow.Whileagentsarealreadybeingdeployedinenterprisepilotsacrossvariousfunctions,thetechnical,organization-al,andlegalinfrastructuresrequiredforrobustsupervisionremainunderdeveloped.Legacygovernanceframeworksareinsufficientandenterprisesneedtoupgradeitwithanew,test-intense,purpose-builtapproach.
“AftertheDigitalandMobilerevolutions,wearenowenteringathirdwaveofmediadisrup-tion:AIagents.Theseagentswillincreasinglymediateourinteractionswithcompanies,
transforminghowwesearch,learn,shop,
work,andcommunicate.Imaginethatin2030,40%ofinteractionsbetweenconsumersandcompanieswillbeshapedbyAI.Buthowdowecontrolthereliabilityandsecurityrisksoftheseagents?”
AlexCOMBESSIE
Co-founder&Co-CEO
}PGiskard
12ΛRFCT
IAGENTICAIRISKSARESHAKINGUPTHETECHGOVERNANCE&THEFUTUREOFAGENTICSUPERVISIONSUPERVISIONGAME.
TECHNOLOGY
Giskardisanopen-sourcetestingplatformdesignedtoensurethequality,security,andcomplianceofAImodels.Itautomatesthedetectionofvulnerabilitiessuchashallucinations,biases,andsecurityflawsinLLMsandagents.Giskard’sfeaturesincludeautomatedtestgeneration,continuousmonitoring,andcollaborativetoolsthatfacilitatecross-functionalteamworkamongdatascientists,developers,andbusinessstakeholders.
FEATURECOVERAGE
Eliability,Regulatorycompliance,Security,FinOps,Latency
OBSERVE.
Giskarddoesnotofferreal-timeob-servabilityfeaturessuchastrackinglatency,tokenusage,orcostmet-rics.Itsprimaryfocusisonpre-de-ploymenttestingandvulnera
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文艺创作与表演行业研究报告及未来行业发展趋势预测
- 混凝土自密实施工技术方案
- 2025年电风扇行业研究报告及未来行业发展趋势预测
- 2025年鞋垫行业研究报告及未来行业发展趋势预测
- 医院收款规章制度会议记录范文
- 心电监护仪使用流程和注意事项出题及答案
- 2025年太阳能电池行业研究报告及未来行业发展趋势预测
- 国家版图知识竞赛题及答案小学
- 建筑装饰工程结构优化方案
- 小儿外科护理理论考试试题与答案
- 插花艺术与花艺课件
- Excel模板:血压记录监测表(自动图表分析)
- Stevens-Johnson-综合征及中毒性表皮坏死松解症
- CADCAM应用技术(CAXA2020)中职全套教学课件
- 生物医学工程伦理 课件全套 第1-10章 生物医学工程与伦理-医学技术选择与应用的伦理问题
- 腾势使用说明书
- 地面水仓清淤安全技术措施
- 物联网概论(第2版)PPT完整全套教学课件
- 中国税制第4版课后部分参考答案刘颖
- 宠物展会策划方案
- 园林植物基础PPT完整全套教学课件
评论
0/150
提交评论