2024年四川省江油市中考数学能力检测试卷附答案详解【预热题】_第1页
2024年四川省江油市中考数学能力检测试卷附答案详解【预热题】_第2页
2024年四川省江油市中考数学能力检测试卷附答案详解【预热题】_第3页
2024年四川省江油市中考数学能力检测试卷附答案详解【预热题】_第4页
2024年四川省江油市中考数学能力检测试卷附答案详解【预热题】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省江油市中考数学能力检测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:…-2013……6-4-6-4…下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当时,y的值随x值的增大而增大2、如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()A. B. C. D.3、2020年7月20日,宁津县人民政府印发《津县城市生活垃圾分类制度实施方案》的通知,全面推行生活垃圾分类.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是(

)A. B. C. D.4、下列说法正确的是(

)①近似数精确到十分位;②在,,,中,最小的是;③如图所示,在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.A.1 B.2 C.3 D.45、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等2、下列命题中不正确的命题有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1与方程x2=1是同解方程C.方程x2=x与方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=33、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(

)A.CE平分∠ACB B. C.E是△PAB的内心 D.4、下面一元二次方程的解法中,不正确的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=15、若为圆内接四边形,则下列哪个选项可能成立(

)A. B.C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是_____.2、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.3、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为______.4、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.5、对于任意实数,抛物线与轴都有公共点.则的取值范围是_______.四、解答题(6小题,每小题10分,共计60分)1、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.2、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n-3).如果一个n边形共有20条对角线,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴这个n边形是八边形.根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?3、某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是600元,而销售单价每涨1元,就会少售出10件玩具.(1)设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获利利润W元;(2)在(1)的条件下,若商场获利了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该品牌玩具获利的最大利润是多少元?4、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.5、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.6、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标.

(2)点在该二次函数图象上.

①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.-参考答案-一、单选题1、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.【详解】解:设二次函数的解析式为,依题意得:,解得:,∴二次函数的解析式为=,∵,∴这个函数的图象开口向上,故A选项不符合题意;∵,∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;∵,∴当时,这个函数有最小值,故C选项符合题意;∵这个函数的图象的顶点坐标为(,),∴当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C.【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.2、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,∵,则△ABO为等腰直角三角形,∴AB=,N为AB的中点,∴ON=,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=,∴OM=ON+MN=,∴OM的最大值为故答案选:B.【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM=ON+MN最大.3、B【解析】【分析】根据轴对称图形和中心对称图形的概念去判断即可.【详解】A、既不是轴对称图形也不是中心对称图形,故不满足题意;B、是轴对称图形也是中心对称图形,故满足题意;C、既不是轴对称图形也不是中心对称图形,故不满足题意;D、既不是轴对称图形也不是中心对称图形,故不满足题意;故选:B.【考点】本题考查了轴对称图形和中心对称图形,关键是紧扣轴对称图形和中心对称图形的概念.4、B【解析】【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数精确到十位,故本小题错误;②,,,,最小的是,故本小题正确;③在数轴上点所表示的数为,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确.故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.5、C【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.二、多选题1、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.2、ABCD【解析】【分析】根据方程、方程的解的有关定义以及解方程等知识点逐项判断即可.【详解】解:A.方程kx2−x−2=0当k≠0时才是一元二次方程,故错误;B.x=1与方程x2=1不是同解方程,故错误;C.方程x2=x与方程x=1不是同解方程,故错误;D.由(x+1)(x−1)=3可得x=±2,故错误.故选:ABCD.【考点】本题主要考查了一元二次方程的定义、解一元二次方程、同解方程等知识点,掌握解一元二次方程的方法是解答本题的关键.3、ACD【解析】【分析】连接OA,BE,根据PA、PB是⊙O的切线,可得PA=PB,OA=OB,可得OP是AB的垂直平分线,根据垂径定理,进而可以判断A;根据OB=OC,AF=BF,可得OF是三角形BAC的中位线,进而即可判断D;证明∠PBE=∠EBA,∠APE=∠BPE,即可判断C;根据AC∥OE,可得△CDA∽△EDF,进而可以判断B.【详解】如图,连接OA,BE,∵PA、PB是⊙O的切线,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分线,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正确;∵BC是⊙O的直径,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正确;∵PB是⊙O的切线,∴∠PBE+∠EBC=90°,∵BC是⊙O的直径,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的内心;故C正确;∵AC∥OE,∴△CDA∽△EDF.故B错误;∴结论正确的是A,C,D.故选:ACD.【考点】此题考查了圆周角定理、切线的性质、三角形中位线定理、及勾股定理的知识,解答本题的关键是熟练掌握切线的性质及圆周角定理,注意各个知识点之间的融会贯通.4、ACD【解析】【分析】各方程求出解,即可作出判断.【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,∵△=64+20=84,∴,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD.【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.5、BD【解析】【分析】根据圆内接四边形的性质得出∠A+∠C=∠B+∠D=180°,再逐个判断即可.【详解】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;B.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;C.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;D.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;故选:BD.【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补.三、填空题1、60π【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题.【详解】解:圆锥的母线,∴圆锥的侧面积=π×10×6=60π,故答案为:60π.【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式.2、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【详解】过点A作于M,∵,∴,∴,∵是等边三角形,∴,∵,∴,∴,在中,,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,,∴在中,;故答案为8.【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.3、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂径定理求出CD.【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH为30°,60°,90°的三角形,其三边之比为,∴CH=,∴CD=2CH=9,故答案为:9.【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键是求出∠COB=60°.4、﹣3<x<1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.5、【解析】【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解.【详解】解:由抛物线与轴都有公共点可得:,即,∴,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,∴,即的最小值为,∴;故答案为.【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键.四、解答题1、(1);(2)【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.【详解】解:(1)由题意可知,,整理得:,解得:,∴的取值范围是:.故答案为:.(2)由题意得:,由韦达定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值为.故答案为:.【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.2、(1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可.(1)设这个多边形的边数是n,则n(n-3)=9,解得n=6或n=-3(舍去).∴这个多边形的边数是6;(2)小明同学的说法是不正确的,理由如下:由题可得n(n-3)=10,解得n=,∴符合方程的正整数n不存在,∴n边形不可能有10条对角线,故小明的说法不正确.【考点】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键.3、(1),;(2)50元或80元;(3)商场销售该品牌玩具获利的最大利润是10560元【解析】【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价-进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45≤x≤52,根据二次函数的性质得到当45≤x≤52时,y随x增大而增大,于是得到结论.【详解】解:(1)依等量关系式“销量=原销量-因涨价而减少销量,总利润=单个利润×销量”可列式为:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由题意可得:10+1300x30000=10000,解得:x=50或x=80,∴该玩具销售单价x应定为50元或80元(3)由题意可得:,解得:45≤x≤52,W=10+1300x30000=10(+12250,∵10<0,W随x的增大而减小,又∵45≤x≤52,∴当x=52时,W有最大值,最大值为10560元,∴商场销售该品牌玩具获利的最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论