




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省平湖市中考数学综合提升测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(
)A. B. C. D.2、已知关于x的方程有一个根为1,则方程的另一个根为(
)A.-1 B.1 C.2 D.-23、在中,AB,CD为两条弦,下列说法:①若,则;②若,则;③若,则弧AB=2弧CD;④若,则.其中正确的有(
)A.1个 B.2个 C.3个 D.4个4、若关于x的二次函数y=ax2+bx的图象经过定点(1,1),且当x<﹣1时y随x的增大而减小,则a的取值范围是()A. B. C. D.5、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是(
)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列方程中,关于x的一元二次方程有(
)A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-92、已知关于的方程,下列说法不正确的是(
)A.当时,方程无解 B.当时,方程有两个相等的实数根C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根3、观察如图推理过程,错误的是(
)A.因为的度数为,所以B.因为,所以C.因为垂直平分,所以D.因为,所以4、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等5、下列命题正确的是(
)A.菱形既是中心对称图形又是轴对称图形B.的算术平方根是5C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形D.如果方程有实数根,则实数第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.2、已知关于的一元二次方程,有下列结论:①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;③当时,方程的两个实根不可能都小于1;④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.3、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.4、已知抛物线与x轴的一个交点为,则代数式的值为______.5、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为__.四、解答题(6小题,每小题10分,共计60分)1、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.2、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.3、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.4、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态5、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.6、已知抛物线y=mx2-2mx-3.(1)若抛物线的顶点的纵坐标是-2,求此时m的值;(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.-参考答案-一、单选题1、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.【详解】解:由图2可知,当P点位于B点时,,即,当P点位于E点时,,即,则,∵,∴,即,∵∴,∵点为的中点,∴,故选:C.【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.2、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可.【详解】解:设关于x的方程的另一个根为x=t,∴1+t=3,解得,t=2故选:C.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.3、A【解析】【分析】根据圆心角、弧、弦之间的关系解答即可.【详解】①若,则,正确;②若,则,故不正确;③由不能得到弧AB=2弧CD,故不正确;④若,则,错误.故选A.【考点】本题考查了圆心角、弧、弦之间的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.也考查了等腰三角形的性质.4、D【解析】【分析】根据题意开口向上,且对称轴−≥−1,a+b=1,即可得到−≥−1,从而求解.【详解】由二次函数y=ax2+bx可知抛物线过原点,∵抛物线定点(1,1),且当x<-1时,y随x的增大而减小,∴抛物线开口向上,且对称轴−≥−1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故选:D.【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键.5、C【解析】【分析】利用列表法或树状图即可解决.【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是.故选:C.【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解.二、多选题1、AC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A.x2=0,C.x2-3=x符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m-1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故选AC.【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.2、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可.【详解】关于的方程,A当k=0时,x-1=0,则x=1,故此选项错误,符合题意;B当k=1时,-1=0,x=±1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,,则,,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k=0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD.【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.3、ABC【解析】【分析】A.
根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.
根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.
根据“垂径定理”及弦的定义可得.D.
根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A.∵的度数是∴,故选项A错误.B.
由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.
由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断,故选项C错误.D.
∵∴即由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.4、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.5、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项.【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a=0时,方程,变为2x+1=0,有实数根,当a≠0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意.故选:AD.【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大.三、填空题1、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为通过以上条件可设顶点式,其中可通过代入A点坐标代入到抛物线解析式得出:所以抛物线解析式为当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出:解得:
所以水面宽度增加到米,比原先的宽度当然是增加了故答案是:【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.2、①③④【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程,∴;∴当,即时,方程有两个不相等的实根;故①正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;∴正确的结论有①③④;故答案为:①③④.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.3、
S=-3x2+24x
≤x<8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围.解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.∴S=x(24−3x)=−3x2+24x.∵0<24−3x≤10,解得≤x<8,故答案为S=-3x2+24x,≤x<8.4、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案为:2019.【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.5、##0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可.【详解】画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:.【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.四、解答题1、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.2、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案.(2)根据根与系数的关系即可求出答案.【详解】解:(1)∵,,,∴,∴;(2)由题意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合题意,舍去,∴k的值不存在.【考点】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型.3、(1);(2)【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.【详解】解:(1)由题意可知,,整理得:,解得:,∴的取值范围是:.故答案为:.(2)由题意得:,由韦达定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值为.故答案为:.【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.4、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是3600元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态.【解析】【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价×销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值.(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案.【详解】解:(1)当时,设直线的表达式为将代入到表达式中得解得∴当时,直线的表达式为∴y=,(2)由已知得:w=py.当1≤x≤5时,w=py=(-x+15)(20x+180)=-20x2+120x+2700=-20(x-3)2+2880,当x=3时,w取最大值2880,当5<x≤9时,w=10(20x+180)=200x+1800,∵x是整数,200>0,∴当5<x≤9时,w随x的增大而增大,∴当x=9时,w有最大值为200×9+1800=3600,当9<x≤15时,w=10(-60x+900)=-600x+9000,∵-600<0,∴w随x的增大而减小,又∵x=9时,w=-600×9+9000=3600.∴当9<x≤15时,W的最大值小于3600综合得:w=,在这15天中,第9天销售额达到最大,最大销售额是3600元.(3)当时,当时,y有最小值,最小值为∴不会有亏损当时,当时,y有最小值,最小值为∴不会有亏损当时,解得∵x为正整数∴∴第13天、第14天、第15天这3天,专柜处于亏损状态.【考点】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键.5、(1),M(,);(2),(,);(3)证明见试题解析.【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,).根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出∠MPN=90°,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省蚌埠市固镇县毛钽厂实验中学2024-2025学年度高一下学期7月期末考试历史试题(含答案)
- 2023-2024学年贵州省黔东南州天柱县九年级上学期物理第一次月考试题及答案
- 数据的准确性试题及答案
- 四川高一生物考试试题及答案
- 桃花源记试题及答案
- 体育管理学试题及答案
- 兵团统采管理办法
- 养犬管理办法西安
- 内部承包管理办法
- 军事光缆管理办法
- 非借款股权质押合同范本
- 《Sketch Up 软件运用》课件(共九章)
- 多器官功能障碍综合征(MODS)的系统监测与全程护理管理实践
- 乙方心态培训课件模板
- 比赛抽签活动方案
- 美团店铺诊断
- 艾滋病护理查房
- 网络安全防范培训
- 2025年7月浙江省普通高中学业水平考试化学试题(解析版)
- 2025年九年级语文中考最后一练议论文专题(全国版)(含解析)
- 2025年普通高等学校招生全国统一考试数学试题(全国一卷)(有解析)
评论
0/150
提交评论