




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省三河市中考数学考前冲刺练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(
)A.1个 B.2个 C.3个 D.4个2、在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()A. B. C. D.3、关于函数,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x=3;③当x≥0时,y随x的增大而增大;④当x≤0时,y随x的增大而减小,其中正确的有()个.A.1 B.2 C.3 D.44、下列方程中,一定是关于x的一元二次方程的是(
)A. B.C. D.5、一元二次方程x2-3x+1=0的根的情况是(
).A.没有实数根 B.有两个相等的实数根C.只有一个实数根 D.有两个不相等的实数根二、多选题(5小题,每小题3分,共计15分)1、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是(
)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.抛物线的顶点坐标为(1,﹣9);B.与y轴的交点坐标为(0,﹣8);C.与x轴的交点坐标为(﹣2,0)和(2,0);D.当x=﹣1时,对应的函数值y为﹣5.2、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(
)A.是劣弧的中点 B.是圆的切线C. D.3、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x…-2-1012……tm22n…已知.则下列结论中,正确的是(
)A. B.和是方程的两个根C. D.(s取任意实数)4、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(
)A.与相切 B.四边形是菱形C. D.5、如图,如果AB为⊙O的直径,弦CD⊥AE,垂足为E,那么下列结论中,正确的是(
)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=10,AE=1,则弦CD的长是_____.2、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.3、如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是_________.4、定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是______.5、抛物线的开口方向向______.四、解答题(6小题,每小题10分,共计60分)1、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件.(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由.2、在中,,,将绕点C顺时针旋转一定的角度得到,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求的大小;(2)若时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形(请用两组对边分别相等的四边形是平行四边形)3、如图1,在等腰直角三角形中,.点,分别为,的中点,为线段上一动点(不与点,重合),将线段绕点逆时针方向旋转得到,连接,.(1)证明:;(2)如图2,连接,,交于点.①证明:在点的运动过程中,总有;②若,当的长度为多少时,为等腰三角形?4、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?5、如图,在平面直角坐标系中,△ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO=2AO.(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PD⊥x轴,垂足为D,PD与直线AB交于点Q,设△CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当△MAB为直角三角形时,直接写出m的值.6、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.-参考答案-一、单选题1、C【解析】【分析】①由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项①错误;②把代入中得,所以②正确;③由时对应的函数值,可得出,得到,由,,,得到,选项③正确;④由对称轴为直线,即时,有最小值,可得结论,即可得到④正确.【详解】解:①∵抛物线开口向上,∴,∵抛物线的对称轴在轴右侧,∴,∵抛物线与轴交于负半轴,∴,∴,①错误;②当时,,∴,∵,∴,把代入中得,所以②正确;③当时,,∴,∴,∵,,,∴,即,所以③正确;④∵抛物线的对称轴为直线,∴时,函数的最小值为,∴,即,所以④正确.故选C.【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右.常数项决定抛物线与轴交点:抛物线与轴交于.抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点.2、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论.【详解】解:由y=x2+k可知抛物线的开口向上,故B不合题意;∵二次函数y=x2+k与y轴交于负半轴,则k<0,∴﹣k>0,∴一次函数y=﹣kx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.3、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性.【详解】解:∵,∴该函数图象开口向上,有最小值1,故①正确;函数图象的对称轴为直线,故②错误;当x≥0时,y随x的增大而增大,故③正确;当x≤﹣3时,y随x的增大而减小,当﹣3≤x≤0时,y随x的增大而增大,故④错误.故选:B.【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质.4、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得.【详解】解:A、,当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B.【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键.5、D【解析】【分析】根据一元二次方程判别式的性质分析,即可得到答案.【详解】∵∴x2-3x+1=0有两个不相等的实数根故选:D.【考点】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.二、多选题1、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=
5时,都是y
=
7,由抛物线的对称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=﹣1时,对应的函数值,判断即可.【详解】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=
5时,都是y
=
7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-
9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,-8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(4,0),C错误,不符合题意;由抛物线的对称性可知:当x=-1时,对应的函数值与x=3时相同,对应的函数值y
=-5,D正确,符合题意,故答案为:ABD.【考点】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息.2、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案.【详解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此选项正确;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切线,故此选项正确;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此选项正确;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此选项错误.故选择ABC.【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键.3、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断.【详解】解:由表格数据可知,当时,,将点代入中,可得.由表格数据可知,当时,;当时,;即抛物线对称轴为:,∵抛物线对称轴为:,∴,化简得,.∵,,∴抛物线解析式化为,.将点代入中,化简得,,∵,∴,解得.∵,∴.∵,,,∴,故A选项说法错误,不符合题意;∵二次函数对称轴为,∴和时,对应的函数值相等,∵时,对应函数值为,∴和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,,,故,C选项说法正确,符合题意;∵,∴,∵,∴,即,∵,∴,s取任意实数,故D选项说法错误,不符合题意;故选:BC.【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键.4、ABCD【解析】【分析】A、利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A项所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出答案;D、利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【详解】A、连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故A正确;B、由A项得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故B正确;C、连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正确;D、∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故D正确;故选:ABCD.【考点】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.5、ABC【解析】【分析】根据垂径定理逐个判断即可.【详解】解:AB为⊙O的直径,弦CD⊥AB垂足为E,则AB是垂直于弦CD的直径,就满足垂径定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正确的.根据条件可以得到AB是CD的垂直平分线,因而AC=AD.所以D是错误的.故选:ABC.【考点】本题主要考查的是对垂径定理的记忆与理解,做题的关键是掌握垂径定理的应用.三、填空题1、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可.【详解】连接OC,∵AB是⊙O的直径,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案为6.【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.2、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长.【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x+5)cm,根据题意,得,所以,解得,,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x=2,当x=2时,x+5=7,由勾股定理,得直角三角形的斜边长为==cm.故答案为:cm.【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用.3、2【解析】【分析】根据中心对称的性质AD=DE及∠D=90゜,由勾股定理即可求得AE的长.【详解】∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案为.【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用.4、【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数的本源函数.【详解】解:由题意得解得∴函数的本源函数是.故答案为:.【考点】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”.5、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.四、解答题1、(1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可.(1)解:设每件服装降价x元.由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30)2-4×600=900-2400=-1500<0,则原方程无实数解.则不可能每天盈利2000元.【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.2、(1)(2)见解析【解析】【分析】(1)根据旋转的性质可得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,根据等边对等角即可求出∠CAD=∠CDA=75°,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF=AC,然后根据30°所对的直角边是斜边的一半即可求出AB=AC,从而得出BF=AB,然后证出△ACD和△BCE为等边三角形,再利用HL证出△CFD≌△ABC,证出DF=BE,即可证出结论.(1)解:∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣∠CAD=15°.(2)证明:如图2,连接AD,∵点F是边AC中点,∴BF=AF=CF=AC,∵∠ACB=30°,∴AB=AC,∴BF=CF=AB,∵△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,DC=AC,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,在Rt△CFD和Rt△ABC中,∴Rt△CFD≌Rt△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【考点】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键.3、(1)见详解;(2)①见详解;②当的长度为2或时,为等腰三角形【解析】【分析】(1)由旋转的性质得AH=AG,∠HAG=90°,从而得∠BAH=∠CAG,进而即可得到结论;(2)①由,得AH=AG,再证明,进而即可得到结论;②为等腰三角形,分3种情况:(a)当∠QAG=∠QGA=45°时,(b)当∠GAQ=∠GQA=67.5°时,(c)当∠AQG=∠AGQ=45°时,分别画出图形求解,即可.【详解】解:(1)∵线段绕点A逆时针方向旋转得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,点,分别为,的中点,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;②∵,点,分别为,的中点,∴AE=AF=2,∵∠AGH=45°,为等腰三角形,分3种情况:(a)当∠QAG=∠QGA=45°时,如图,则∠HAF=90°-45°=45°,∴AH平分∠EAF,∴点H是EF的中点,∴EH=;(b)当∠GAQ=∠GQA=(180°-45°)÷2=67.5°时,如图,则∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)当∠AQG=∠AGQ=45°时,点H与点F重合,不符合题意,舍去,综上所述:当的长度为2或时,为等腰三角形.【考点】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.4、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与⊙O相切.【解析】【分析】(1)由题意得:,,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.先证明四边形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,则122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【详解】解:(1)由题意得:,,∴,∵四边形PQCD是平行四边形,∴DP=CQ,∴,解得,∴当时,四边形PQCD为平行四边形;(2)设PQ与⊙O相切于点H过点P作PE⊥BC,垂足为E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四边形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB为⊙O的直径,∠ABC=∠DAB=90°,∴AD、BC为⊙O的切线,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国移动秦皇岛市2025秋招笔试行测题库及答案计算机类
- 2025年南阳社旗县公开招聘医疗健康服务集团专业技术人员250名考前自测高频考点模拟试题及答案详解(典优)
- 2025年宁夏医科大学总医院自主公开招聘高层次工作人员模拟试卷及答案详解一套
- 2025年合肥师范学院高层次人才招聘63人模拟试卷及答案详解参考
- 2025年皖南医学院第二附属医院招聘编外28人考前自测高频考点模拟试题有答案详解
- 城市低保申请书汇编15篇
- 钣金喷漆业务承包合同5篇
- 2025年网络直播行业市场规模与发展前景研究报告-文化与娱乐产业新机遇
- 2025年植物组织培养在花卉产业中的应用报告
- 2025年工业互联网平台自然语言处理在工业智能仓储管理中的应用报告
- (完整)马克思主义政治经济学习题及参考答案
- 大规模模型蒸馏技术
- 贝朗DIALOG+透析机水路设计概览课件
- 光电功能材料课程-13-18课件
- 施工现场污水排放方案
- 黔西市中医医院金阳院区环评报告
- 我的家乡-枣阳
- 青春期生理卫生知识讲座男生篇
- 高中期中考试家长会PPT课件 (共51张PPT)
- 全球卫生治理课件
- 实验室生物安全程序文件
评论
0/150
提交评论