解析卷-京改版数学9年级上册期中试题附答案详解(满分必刷)_第1页
解析卷-京改版数学9年级上册期中试题附答案详解(满分必刷)_第2页
解析卷-京改版数学9年级上册期中试题附答案详解(满分必刷)_第3页
解析卷-京改版数学9年级上册期中试题附答案详解(满分必刷)_第4页
解析卷-京改版数学9年级上册期中试题附答案详解(满分必刷)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期中试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒2、将三角形纸片()按如图所示的方式折叠,使点C落在边上的点D,折痕为.已知,若以点B、D、F为顶点的三角形与相似,那么的长度是(

)A.2 B.或2 C. D.或23、如图,在中,,,将绕点C顺时针旋转得到,点在上,交于F,则图中与相似的三角形有(不再添加其他线段)(

)A.1个 B.2个 C.3个 D.4个4、关于二次函数的最大值或最小值,下列说法正确的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值65、二次函数的图象的对称轴是(

)A. B. C. D.6、二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)二、多选题(7小题,每小题2分,共计14分)1、如图,的顶点位于正方形网格的格点上,若,则满足条件的是(

)A. B.C. D.2、已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n的值为(

).A.5+2B.15C.10+D.15+33、如图,在中,D是边AC上一点,连BD,给出下列条件,其中单独能够判定的是(

)A. B.C. D.4、二次函数y=a+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()A.抛物线与x轴的另一个交点是(5,0);B.4a+c>2b;C.4a+b=0;D.当x>﹣1时,y的值随x值的增大而增大.5、如图,反比例函数与一次函数的图象交于A,B两点,一次函数的图象经过点A.下列结论正确的是(

)A.B.点B的坐标为C.连接OB,则D.点C为y轴上一动点,当△ABC的周长最小时,点C的坐标是6、下列四组图形中,是相似图形的是(

)A. B.C. D.7、如图所示,,,,均在正方形网格中的格点上,,分别用和表示,下列四个选项中不正确的是()A. B. C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.2、二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.3、如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结.若的面积与的面积相等,则的值是_____.4、若函数是反比例函数,那么k的值是_____.5、已知二次函数的图象与x轴的两个交点A,B关于直线x=﹣1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为________

.6、二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.7、图1是一种手机托架,使用该手机托架示意图如图3所示,底部放置手机处宽AB1.2厘米,托架斜面长BD6厘米,它有C到F共4个档位调节角度,相邻两个档位间的距离为0.8厘米,档位C到B的距离为2.4厘米.将某型号手机置于托架上(图2),手机屏幕长AG是15厘米,O是支点且OBOE2.5厘米(支架的厚度忽略不计).当支架调到E档时,点G离水平面的距离GH为__________cm.四、解答题(6小题,每小题10分,共计60分)1、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.2、如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.3、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标.

(2)点在该二次函数图象上.

①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.4、若二次函数图像经过,两点,求、的值.5、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.6、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).-参考答案-一、单选题1、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,∴抛物线的对称轴为:秒,∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.2、B【解析】【分析】分两种情况:若或若,再根据相似三角形的性质解题【详解】∵沿折叠后点C和点D重合,∴,设,则,以点B、D、F为顶点的三角形与相似,分两种情况:①若,则,即,解得;②若,则,即,解得.综上,的长为或2,故选:B.【考点】本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键.3、D【解析】【分析】根据旋转的性质及相似三角形的判定方法进行分析,找出存在的相似三角形即可.【详解】根据题意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4个故选D.【考点】考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.4、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6),∴函数有最小值为6.故选:D.【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值.5、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴.【详解】解:.二次函数的图象的对称轴是.故选A.【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.6、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标.【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),∵抛物线与x轴的两个交点关于对称轴对称,∴抛物线与x轴的另一个交点坐标为(﹣1,0),故选:A.【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标.二、多选题1、AD【解析】【分析】根据在直角三角形中一个角的正切值等于其所对的边与斜边的比值进行构造直角三角形求解判断即可.【详解】解:A、如图所示,,∴,故此选项符合题意;B、如图所示,,∴,故此选项不符合题意;C、如图所示,,∴,故此选项不符合题意;D、如图所示,,,BD⊥AC,∴,∴,∴∴,故此选项符合题意;故选AD.【考点】本题主要考查了求正切值和勾股定理,解题的关键在于能够构造直角三角形进行求解.2、AC【解析】【分析】根据相似三角形的性质、分情况计算即可.【详解】解:当3,4为直角边,6,8也为直角边时,此时两三角形相似;当三边分别为3,4,,和6,8,2,此时两三角形相似;当3,4为直角边时,m=5;则8为另一三角形的斜边,其直角边为:n==2,故m+n=5+2;当6,8为直角边,n=10;则4为另一三角形的斜边,其直角边为:m==,故m+n=10+;综上所述:m+n的值为5+2或10+,故选:A、C.【考点】本题主要考查了勾股定理以及相似三角形的性质,在直角三角形中对未知边是直角边还是斜边进行不同情况的讨论是解题的关键.3、AB【解析】【分析】由已知条件可得△ABD与△ACB中∠A为公共角,所以只要再找一组角相等或夹∠A的两边对应成比例即可解答.【详解】解∵①∵∠ABD=∠ACB,∠A=∠A,∴;②∵AB2=AD·AC,即,∠A=∠A,∴;③∵,∴、∠A=∠A,不能判定;④∵,∴、∠A=∠A,不能判定.故选::AB.【考点】本题主要考查了相似三角形的判定,掌握两个角对应相等的三角形相似和两边对应成比例且夹角相等的两个三角形相似成为解答本题的关键.4、AC【解析】【分析】根据二次函数的性质,对称轴的性质,函数的增减性逐一判断即可.【详解】设抛物线与x轴的另一个交点的横坐标为,∵二次函数y=a+bx+c(a≠0)的图象过点(﹣1,0),对称轴为直线x=2,∴,∴4a+b=0,=5,∴抛物线与x轴的另一个交点是(5,0);故A,C两个选项正确;根据图像信息,得x=-2时,其函数值小于0,∴4a-2b+c<0即4a+c<2b,故B选项错误;根据图像信息,当﹣1<x<2时,y的值随x值的增大而增大,故D选项错误;故选AC.【考点】本题考查了二次函数的性质,对称轴的意义,抛物线与x轴的交点,函数的增减性,熟练掌握二次函数的性质是解题的关键.5、AC【解析】【分析】联立求得的坐标,然后根据待定系数法即可求解反比例函数解析式,然后可得点B的坐标,则有根据割补法进行求解三角形面积,进而根据轴对称的性质可求解当△ABC的周长最小时点C的坐标【详解】解:联立,解得,点坐标为.将代入,得..反比例函数的表达式为;∴联立,解得或..在中,令,得.故直线与轴的交点为.如图,过、两点分别作轴的垂线,交轴于、两点,则.过点A作y轴的对称点D,连接BD,交y轴于点C,此时△ABC的周长为最小,如图所示:∴,设直线BD的解析式为,则有:,解得:,∴直线BD的解析式为,令x=0时,则有,∴;综上所述:正确的有AC选项;故选AC【考点】本题考查了反比例函数与一次函数的交点,体现了方程思想,数形结合是解题的关键.6、ABC【解析】【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故符合题意;B、形状相同,但大小不同,符合相似形的定义,故符合题意;C、形状相同,但大小不同,符合相似形的定义,故符合题意;D、形状不相同,不符合相似形的定义,故不符合题意;故选:ABC.【考点】本题考查的是相似形的定义,结合图形,即图形的形状相同,但大小不一定相同的变换是相似变换.7、ABD【解析】【分析】利用勾股定理先求解再分别求解,从而可得答案.【详解】解:由勾股定理得:所以:,,,,故A,B,D符合题意,C不符合题意;故选:ABD【考点】本题考查的是锐角三角函数的定义及计算,掌握锐角三角函数的定义是解题的关键.三、填空题1、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.2、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标.【详解】∵x=-2,y=-3;x=0时,y=-3,∴抛物线的对称轴为直线x=-1,∵抛物线与x轴的一个交点坐标为(-3,0),∴抛物线与x轴的一个交点坐标为(1,0).故答案为(1,0).【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.3、2.【解析】【分析】过点作轴于.根据k的几何意义,结合三角形面积之间的关系,求出交点D的坐标,代入即可求得k的值.【详解】如图,过点作轴于.把y=0代入得:x=2,故OA=2由反比例函数比例系数的几何意义,可得,.∵,

∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2【考点】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k的方程.4、0【解析】【分析】直接利用反比例函数的定义得出答案.【详解】∵函数是反比例函数,∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合题意舍去)∴k=0.故答案为:0.【考点】本题主要考查反比例函数的定义,掌握反比例函数的定义,是解题的关键.5、y=x2+x﹣【解析】【分析】利用抛物线与x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入即可求出顶点坐标,设顶点式即可求出二次函数表达式.【详解】解:∵二次函数的图象与x轴的两个交点A,B关于直线x=﹣1对称,且AB=6,∴A(-4,0),B(2,0),顶点横坐标为-1,又∵顶点在函数y=2x的图象上,∴将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x﹣【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.6、故答案为:【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键.25.

或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案.【详解】∵抛物线的对称轴为,抛物线与x轴一个交点为(5,0)∴抛物线与x轴另一个交点为(-1,0)∴方程的解为:,由图像可知,不等式的解集为:或.故答案为:,;或.【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键.7、【解析】【分析】如图3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性质求出DT,BT,AD,即可求出GH的长.【详解】如图3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案为:.【考点】本题考查了相似三角形的应用,勾股定理的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.四、解答题1、(1)每个冰墩墩钥匙扣的进价为12元(2)①,最大值为1960元;②每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①∵且x是大于20的正整数∴当时,w有最大值,最大值为1960元②售价为24元或25元或26元或27元或28元.解析如下:②由题意得,,解得或29∵抛物线开口向下,x是大于20的正整数∴当时,每周总利润不低于1870元,【考点】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.2、旗杆的高度为11.5m【解析】【分析】根据相似三角形的性质列式计算即可;【详解】解:由题意可得:△DEF∽△DCA,则,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m).答:旗杆的高度为11.5m.【考点】本题主要考查了相似三角形的性质应用,准确分析计算是解题的关键.3、(1);(2)①11;②.【解析】【分析】(1)把点P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得-2<m<2,在此范围内求n即可.【详解】(1)解:把代入,得,解得.∵,∴顶点坐标为.(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.4、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得,解得:∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.5、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论