难点解析-青海省德令哈市中考数学真题分类(勾股定理)汇编专题训练试题(含详细解析)_第1页
难点解析-青海省德令哈市中考数学真题分类(勾股定理)汇编专题训练试题(含详细解析)_第2页
难点解析-青海省德令哈市中考数学真题分类(勾股定理)汇编专题训练试题(含详细解析)_第3页
难点解析-青海省德令哈市中考数学真题分类(勾股定理)汇编专题训练试题(含详细解析)_第4页
难点解析-青海省德令哈市中考数学真题分类(勾股定理)汇编专题训练试题(含详细解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省德令哈市中考数学真题分类(勾股定理)汇编专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形.若AB=3cm,则阴影部分的面积为()A.1cm2 B.2cm2 C.cm2 D.cm22、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()A. B. C. D.3、如图,在水塔O的东北方向24m处有一抽水站A,在水塔的东南方向18m处有一建筑工地B,在AB间建一条直水管,则水管AB的长为(

)A.40m B.45m C.30m D.35m4、△ABC的三边长a,b,c满足+(b﹣12)2+|c﹣13|=0,则△ABC的面积是(

)A.65 B.60 C.30 D.265、《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10026、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为(

)A.3.2m B.3.5m C.3.9m D.4m7、如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是(

)A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c2第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是_______cm.2、如图,在一次综合实践活动中,小明将一张边长为的正方形纸片,沿着边上一点与点的连线折叠,点是点的对应点,延长交于点,经测量,,则的面积为______.3、如图,在正方形网格中,点A,B,C,D,E是格点,则∠ABD+∠CBE的度数为_____________.

4、如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=__.5、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈=10尺).意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长____________尺.6、在平面直角坐标系中,点(3,﹣2)到原点的距离是_____.7、如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为_______.8、云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的.下图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为,其边缘,点E在上,.一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为_________m.三、解答题(7小题,每小题10分,共计70分)1、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大樱桃批发市场E应建什么位置才能符合要求?2、如图,把长方形纸片沿折叠,使点落在边上的点处,点落在点处.(1)试说明;(2)设,,,试猜想,,之间的关系,并说明理由.3、如图,已知和中,,,,点C在线段BE上,连接DC交AE于点O.(1)DC与BE有怎样的位置关系?证明你的结论;(2)若,,求DE的长.4、如图,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?5、下图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图.小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度.6、在边长为8的等边ABC中,点D是边AB上的一动点,点E在边AC上,且CE=2AD,射线DE绕点D顺时针旋转60°交BC边于F.(1)如图1,求证:∠AED=∠BDF;(2)如图2,在射线DF上取DP=DE,连接BP,①求∠DBP的度数;②取边BC的中点M,当PM取最小值时,求AD的长.7、如图所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)出发3s后,求PQ的长;(2)当点Q在边BC上运动时,出发多久后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.-参考答案-一、单选题1、D【解析】【分析】由菱形的性质得到∠FCO=∠ECO,进而证明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面积为2,最后由阴影部分的面积=S菱形AECF解题.【详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.∴阴影部分的面积=S菱形AECF=cm2.故选:D.【考点】本题考查菱形的性质、勾股定理、含30°直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键.2、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入数据求得CF=故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分.3、C【解析】【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【详解】解:∵OA是东北方向,OB是东南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故选:C.【考点】本题考查的知识点是解直角三角形的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.4、C【解析】【分析】首先根据非负数的性质可得a-5=0,b-12=0,c-13=0,进而可得a、b、c的值,再利用勾股定理逆定理证明△ABC是直角三角形,最后由直角三角形面积公式求解即可.【详解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故选:C.【考点】此题主要考查了非负数的性质,以及勾股定理逆定理,熟练掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,利用非负数性质求出a、b、c的值是解题的关键.5、D【解析】【分析】1丈=100寸,6尺8寸=68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈=100寸,6尺8寸=68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)2=1002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键.6、C【解析】【分析】如图,在Rt△ACB中,先根据勾股定理求出AB,然后在Rt△A′BD中根据勾股定理求出BD,进而可得答案.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故选:C.【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键.7、A【解析】【详解】设EF=x,DF=y,根据三角形重心的性质得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加减消元法消去x、y得到a、b、c的关系.【解答】解:设EF=x,DF=y,∵AD,BE分别是BC,AC边上的中线,∴点F为△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故选:A.【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.二、填空题1、8【解析】【详解】如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案为8.2、##【解析】【分析】根据题意,,进而求得,勾股定理求得,即可求得的面积.【详解】解:折叠,,,,∵四边形是正方形∴中..故答案为:【考点】本题考查了折叠的性质,勾股定理,掌握勾股定理是解题的关键.3、45°【解析】【分析】取网格点M、N、F,连接AM、AN、BM、MF、BN,根据网格线可得到∠ABD+∠CBE=∠MAB,再根据勾股定理的逆定理证明△ABM是直角三角形,且AM=BM,即可得解.【详解】取网格点M、N、F,连接AM、AN、BM、MF、BN,如图,根据网格线可知NB=1=MF,AN=3,AF=2,由网格图可知∠CBE=∠FAM,∠ABD=∠NAB,则∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案为:45°.【考点】本题考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知识,求得∠ABD+∠CBE=∠MAB是解答本题的关键.4、5【解析】【分析】根据角度转换,得到三角形ADE是直角三角形,然后运用勾股定理计算出DE的长.【详解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考点】本题主要考查到运用勾股定理求长度,说明三角形ADE是直角三角形是解题的关键.5、13【解析】【分析】设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据勾股定理列方程求解即可.【详解】解:根据题意,设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据题意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案为:13.【考点】此题考查了勾股定理的实际应用,解题的关键是根据题意设出未知数,根据勾股定理列方程求解.6、【解析】【分析】根据两点的距离公式计算求解即可.【详解】解:由题意知点(3,﹣2)到原点的距离为故答案为:.【考点】本题考查了用勾股定理求解两点的距离公式.解题的关键在于熟练掌握距离公式:、两点间的距离公式为.7、8【解析】【分析】作交的延长于点,在中,,在中,,根据列出方程即可求解.【详解】如图,作交的延长于点,则即为BC边上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案为:8.【考点】本题考查了勾股定理,掌握三角形的高,直角三角形是解题的关键.8、【解析】【分析】根据题意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,线段AE即为滑行的最短路线长.在Rt△ADE中,根据勾股定理即可求出滑行的最短路线长.【详解】解:如图,根据题意可知:AD==12,DE=CD﹣CE=24﹣4=20,线段AE即为滑行的最短路线长.在Tt△ADE中,根据勾股定理,得AE=(m).故答案为:【考点】本题考查了平面展开﹣最短路径问题,解决本题的关键是掌握圆柱的侧面展开图是矩形,利用勾股定理求最短距离.三、解答题1、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可.【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米.在直角中,根据勾股定理得:,∴,在直角中,根据勾股定理得:,∴.又∵C、D两村到E点的距离相等,∴,∴,所以,解得.∴大樱桃批发市场E应建在离A站20千米的地方.【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.2、(1)证明见解析;(2),,之间的关系是.理由见解析.【解析】【分析】(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形中,由勾股定理可得,,之间的关系.【详解】(1)由折叠的性质,得,,在长方形纸片中,,∴,∴,∴,∴.(2),,之间的关系是.理由如下:由(1)知,由折叠的性质,得,,.在中,,所以,所以.【考点】本题主要考查了勾股定理,灵活利用折叠的性质进行线段间的转化是解题的关键.3、(1),见解析;(2)【解析】【分析】(1)易证,再根据全等性质即可求得;(2)由BC和CE可得BE,再由全等的,再根据勾股定理即可求得;【详解】(1).证明:.在和中,.(2),..【考点】本题考查三角形全等和勾股定理,掌握三角形全等条件是解题的关键.4、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海

天”号航行方向.【详解】解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿东北方向航行,即沿北偏东45°方向航行,∴∠RPS=45°,∴“海天”号沿北偏西45°(或西北)方向航行.【考点】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.5、小敏的猜想错误,立柱AB段的正确长度长为9米.【解析】【分析】延长FC交AB于点G,设BG=x米,在Rt△BGC中利用勾股定理可求x,进而可得AB的正确长度【详解】解:如图,延长FC交AB于点G则CG⊥AB,AG=CD=1米,GC=AD=15米设BG=x米,则BC=(26-1-x)米在Rt△BGC中,∵∴解得

∴BA=BG+GA=8+1=9(米)∴小敏的猜想错误,立柱AB段的正确长度长为9米.【考点】本题主要考查勾股定理的应用,解题的关键是作出辅助线,构造直角三角形6、(1)见解析;(2)①30°;②2【解析】【分析】(1)根据等边三角形的性质求解即可;(2)①方法一:连接EP,过点P作GQ∥BC分别交AB,AC于点G,Q,易知△AGQ和△DEP均为等边三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,证明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,当时,PM取得最小值,得到PM=2,PB=2,过点G作GH⊥BP于点H,利用直角三角形的性质求解即可;【详解】解:(1)在等边△ABC中,∵AB=AC,∠A=∠ABC=∠C=60°,∵∠EDF=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF;(2)①方法一:如答题图1,连接EP,过点P作GQ∥BC分别交AB,AC于点G,Q,易知△AGQ和△DEP均为等边三角形,∴BG=CQ,∠AGQ=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF,同理∠BDF=∠EPQ,∴可证:△ADE≌△GPD≌△QEP(AAS),∴AD=GP=QE,∵CE=2AD=CQ+EQ=AD+BG,∴PG=BG,∴∠DBP=∠BPG=30°;方法二:如答题图2,在DB上取DG=AE,∵∠AED=∠BDF又∵DP=DE,∴△ADE≌△GPD(SAS),∴PG=AD,∠PGD=60°,∵CE=AC-AE=AB-DG=AD+BG=2AD,∴BG=AD=PG,∴∠DBP=∠BPG=30°;②如答图3,在DB上取DG=AE,由①可知∠MBP=30°,AD=BG=PG;当时,PM取得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论