复数选择题专项训练单元测试提优卷试题_第1页
复数选择题专项训练单元测试提优卷试题_第2页
复数选择题专项训练单元测试提优卷试题_第3页
复数选择题专项训练单元测试提优卷试题_第4页
复数选择题专项训练单元测试提优卷试题_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复数选择题专项训练单元测试提优卷试题一、复数选择题1.复数()A. B. C. D.答案:C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C2.复数,则的共轭复数为()A. B. C. D.答案:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.3.设复数,它在复平面内对应的点位于虚轴的正半轴上,且有,则()A. B.0 C.1 D.2答案:C【分析】根据复数的几何意义得.【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,∴.故选:C.解析:C【分析】根据复数的几何意义得.【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,∴.故选:C.4.若复数为纯虚数,且,则实数的值为()A. B.7 C. D.答案:B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.5.已知复数(为虚数单位),则()A. B. C. D.答案:D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D解析:D【分析】先对化简,求出,从而可求出【详解】解:因为,所以,故选:D6.已知为虚数单位,若复数为纯虚数,则()A. B. C. D.答案:A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则,所以,所以故选:A解析:A【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得【详解】由复数为纯虚数,则,解得则,所以,所以故选:A7.设是虚数,是实数,且,则的实部取值范围是()A. B. C. D.答案:B【分析】设,由是实数可得,即得,由此可求出.【详解】设,,则,是实数,,则,,则,解得,故的实部取值范围是.故选:B.解析:B【分析】设,由是实数可得,即得,由此可求出.【详解】设,,则,是实数,,则,,则,解得,故的实部取值范围是.故选:B.8.设,则()A. B. C.2 D.5答案:B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B.解析:B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B.9.已知复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C.解析:C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C.10.复数(为虚数单位)在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.11.在复平面内,复数对应的点的坐标是,则()A. B.C. D.答案:A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A12.设复数(其中为虚数单位),则在复平面内对应的点所在象限为()A.第四象限 B.第三象限 C.第二象限 D.第一象限答案:A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.13.若复数,i是虚数单位,则()A.0 B. C.1 D.2答案:C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C.解析:C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C.14.设复数满足,则()A. B. C. D.答案:B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B15.欧拉是瑞士著名数学家,他首先发现:(e为自然对数的底数,i为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,=()A.1 B.0 C.-1 D.1+i答案:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C解析:C【分析】利用复数和三角函数的性质,直接代入运算即可【详解】由题意可知=,故选C二、复数多选题16.已知复数Z在复平面上对应的向量则()A.z=-1+2i B.|z|=5 C. D.答案:AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,,|z|=,,故选:AD17.已知复数(i为虚数单位)在复平面内对应的点为,复数z满足,下列结论正确的是()A.点的坐标为 B.复数的共轭复数对应的点与点关于虚轴对称C.复数z对应的点Z在一条直线上 D.与z对应的点Z间的距离的最小值为答案:ACD【分析】根据复数对应的坐标,判断A选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C选项的正确解析:ACD【分析】根据复数对应的坐标,判断A选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C选项的正确性.结合C选项的分析,由点到直线的距离公式判断D选项的正确性.【详解】复数在复平面内对应的点为,A正确;复数的共轭复数对应的点与点关于实轴对称,B错误;设,代入,得,即,整理得,;即Z点在直线上,C正确;易知点到直线的垂线段的长度即为、Z之间距离的最小值,结合点到直线的距离公式可知,最小值为,故D正确.故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.18.下列结论正确的是()A.已知相关变量满足回归方程,则该方程相应于点(2,29)的残差为1.1B.在两个变量与的回归模型中,用相关指数刻画回归的效果,的值越大,模型的拟合效果越好C.若复数,则D.若命题:,,则:,答案:ABD【分析】根据残差的计算方法判断A,根据相关指数的性质判断B,根据复数的模长公式判断C,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A,根据相关指数的性质判断B,根据复数的模长公式判断C,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A正确;在两个变量与的回归模型中,的值越大,模型的拟合效果越好,则B正确;,,则C错误;由否定的定义可知,D正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.19.已知,为复数,下列命题不正确的是()A.若,则 B.若,则C.若则 D.若,则答案:BCD【分析】根据两个复数之间不能比较大小,得到C、D两项是错误的,根据复数的定义和复数模的概念,可以断定A项正确,B项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C、D两项是错误的,根据复数的定义和复数模的概念,可以断定A项正确,B项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C、D两项都不正确;当两个复数的模相等时,复数不一定相等,比如,但是,所以B项是错误的;因为当两个复数相等时,模一定相等,所以A项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.20.已知为虚数单位,以下四个说法中正确的是().A.B.C.若,则复平面内对应的点位于第四象限D.已知复数满足,则在复平面内对应的点的轨迹为直线答案:AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式化简,得出,从而判断D.【详解】,则A正确;虚数不能比较大小,则B错误;,则,解析:AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式化简,得出,从而判断D.【详解】,则A正确;虚数不能比较大小,则B错误;,则,其对应复平面的点的坐标为,位于第三象限,则C错误;令,,,解得则在复平面内对应的点的轨迹为直线,D正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.21.设i为虚数单位,复数,则下列命题正确的是()A.若为纯虚数,则实数a的值为2B.若在复平面内对应的点在第三象限,则实数a的取值范围是C.实数是(为的共轭复数)的充要条件D.若,则实数a的值为2答案:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A:为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A:为纯虚数,有可得,故正确选项B:在复平面内对应的点在第三象限,有解得,故错误选项C:时,;时,即,它们互为充要条件,故正确选项D:时,有,即,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围22.已知复数(其中为虚数单位),则以下结论正确的是()A. B. C. D.答案:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.23.已知复数z满足(1﹣i)z=2i,则下列关于复数z的结论正确的是()A.B.复数z的共轭复数为=﹣1﹣iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根答案:ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i)z=解析:ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i)z=2i,所以,所以,故正确;所以,故正确;由知,复数对应的点为,它在第二象限,故正确;因为,所以正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.24.已知复数,其中是虚数单位,则下列结论正确的是()A. B.的虚部为C. D.在复平面内对应的点在第四象限答案:AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A选项正确;,虚部为,所以B选项正确;,所以C选项错误;,对应点为,在第三象限,故D选项错误.故选解析:AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A选项正确;,虚部为,所以B选项正确;,所以C选项错误;,对应点为,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.25.已知复数的共轭复数为,且,则下列结论正确的是()A. B.虚部为 C. D.答案:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD.【解析:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD.【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.26.已知复数满足为虚数单位,复数的共轭复数为,则()A. B.C.复数的实部为 D.复数对应复平面上的点在第二象限答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A错误;,故B正确;复数的实部为,故C错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A错误;,故B正确;复数的实部为,故C错误;复数对应复平面上的点在第二象限,故D正确.故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.27.下面四个命题,其中错误的命题是()A.比大 B.两个复数当且仅当其和为实数时互为共轭复数C.的充要条件为 D.任何纯虚数的平方都是负实数答案:ABC【分析】根据虚数不能比大小可判断A选项的正误;利用特殊值法可判断B选项的正误;利用特殊值法可判断C选项的正误;利用复数的运算可判断D选项的正误.【详解】对于A选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A选项的正误;利用特殊值法可判断B选项的正误;利用特殊值法可判断C选项的正误;利用复数的运算可判断D选项的正误.【详解】对于A选项,由于虚数不能比大小,A选项错误;对于B选项,,但与不互为共轭复数,B选项错误;对于C选项,由于,且、不一定是实数,若取,,则,C选项错误;对于D选项,任取纯虚数,则,D选项正确.故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.28.若复数,则()A.B.z的实部与虚部之差为3C.D.z在复平面内对应的点位于第四象限答案:AD【分析】根据复数的运算先求出复数z,再根据定义、模、几何意义即可求出.【详解】解:,,z的实部为4,虚部为,则相差5,z对应的坐标为,故z在复平面内对应的点位于第四象限,所以AD正解析:AD【分析】根据复数的运算先求出复数z,再根据定义、模、几何意义即可求出.【详解】解:,,z的实部为4,虚部为,则相差5,z对应的坐标为,故z在复平面内对应的点位于第四象限,所以AD正确,故选:AD.29.已知为虚数单位,则下列选项中正确的是()A.复数的模B.若复数,则(即复数的共轭复数)在复平面内对应的点在第四象限C.若复数是纯虚数,则或D.对任意的复数,都有答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论