苏教七年级下册期末复习数学真题(比较难)_第1页
苏教七年级下册期末复习数学真题(比较难)_第2页
苏教七年级下册期末复习数学真题(比较难)_第3页
苏教七年级下册期末复习数学真题(比较难)_第4页
苏教七年级下册期末复习数学真题(比较难)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教七年级下册期末复习数学真题(比较难)一、选择题1.下列运算正确的是()A.(x+3)2=x2+9 B.a2•a3=a6C.(x﹣9)(x+9)=x2﹣9 D.(a2)3=a62.如图,直线a,b被直线c所截,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠53.如果2﹣x,0,2,2x﹣4这四个实数在数轴上所对应的点,从左到右依次排列,那么x的取值范围是()A.x<2 B.x>2 C.2<x<3 D.x>34.若a<b,则下列各式中正确的是()A.a+b<0 B.-a<-b C.> D.a-b<05.若数使关于的不等式组有且只有四个整数解,则的取值范围是()A.或 B.C. D.6.下列命题:(1)如果,,那么;(2)两直线平行,同旁内角相等;(3)对顶角相等;(4)等角的余角相等.其中,真命题的个数是()A.1 B.2 C.3 D.47.对一组数的一次操作变换记为,定义变换法则如下:;且规定,为大于1的整数.如:,,,则()A. B. C. D.8.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2017次相遇在边()A.AB上 B.BC上 C.CD上 D.DA上二、填空题9.计算的结果是______.10.“同位角相等”这个命题的逆命题是__,这个逆命题是__命题.11.一个多边形的内角和与外角和之差为720,则这个多边形的边数为______.12.利用平方差公式计算的结果为______.13.已知方程组的解满足,则的取值范围是________.14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m,且桥宽忽略不计,则小桥的总长为______m.15.正五边形每个内角的度数是_______.16.如图,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点共有___个.17.计算(1)(-2a2)3+2a2·a4-a8÷a2(2)18.因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.19.解方程组:(1)(2)20.解不等式组并将其解集在数轴上表示出来.三、解答题21.填写下列空格完成证明:如图,,求.解:,_______.(理由是:______),._____________.(理由是:_______)_______.(理由是:______),________.22.某小区准备新建个停车位,以解决小区停车难的问题.已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,(1)该小区新建个地上停车位和个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.23.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值.24.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.25.如图,,点在直线上,点在直线和之间,,平分.(1)求的度数(用含的式子表示);(2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明;(3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示).【参考答案】一、选择题1.D解析:D【分析】直接根据完全平方公式、平方差公式,同底数幂的乘法和幂的乘方计算法则求解判断即可.【详解】解:A、(x+3)2=x2+6x+9,故原题计算错误;B、a2•a3=a5,故原题计算错误;C、(x﹣9)(x+9)=x2﹣81,故原题计算错误;D、(a2)3=a6,故原题计算正确;故选D.【点睛】本题主要考查了完全平方公式、平方差公式,同底数幂的乘法和幂的乘方计算,解题的关键在于能够熟练掌握相关知识进行求解.2.A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.3.D解析:D【分析】根据在数轴上表示的数,右边的数总比左边的数大得出不等式组,求出不等式组的解集即可.【详解】解:由题意得,解不等式①得:x>2,解不等式②得:x>3,∴不等式组的解集为x>3,故选:D.【点睛】本题考查了解一元一次不等式组,实数和数轴的应用,解此题的关键是能根据题意得出关于x的不等式组.4.D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a<b,∴a+b不一定小于0,如a=0,b=1,a+b>0,故本选项不符合题意;B、∵a<b,∴-a>-b,故本选项不符合题意;C、∵a<b,∴<,故本选项不符合题意;D、∵a<b,∴a-b<0,故本选项符合题意;故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.5.D解析:D【分析】先解出每个不等式的解集,再根据不等式组的解集得出a的取值范围即可.【详解】解:不等式组,解①得:x<5,解②得:x≥,∵该不等式组有且只有四个整数解,∴0<≤1,解得:﹣2<a≤2,故选:D.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式的解法,正确得出关于a的一元一次不等式组是解答的关键.6.C解析:C【分析】利用不等式的性质、平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【详解】解:(1)如果a<0,b<0,那么a+b<0,正确,是真命题;(2)两直线平行,同旁内角互补,故错误,是假命题;(3)对顶角相等,正确,是真命题;(4)等角的余角相等,正确,是真命题,真命题有3个.故选:C.【点睛】本题考查命题与定理的知识,解题的关键是了解不等式的性质、平行线的性质、对顶角的性质及余角的定义等知识.7.C解析:C【分析】根据题目提供的变化规律,找到点的坐标的变化规律并按此规律求得的值即可.【详解】解:P1(1,-1)=(0,2),P2(1,-1)=P1(P1)=P1(0,2)=(2,-2),P3(1,-1)=P1(P2)=P1(2,-2)=(0,4)=(0,22),P4(1,-1)=P1(P3)=P1(0,4)=(4,-4),P5(1,-1)=P1(P4)=P1(4,-4)=(0,8)=(0,23),P6(1,-1)=P1(P5)=P1(0,8)=(8,-8),…当n为奇数时,Pn(1,-1)=(0,),∴=(0,)=(0,21011),应该等于.故选C.【点睛】本题考查了数字的变化类问题,解题的关键是认真审题并从中找到正确的规律,并应用此规律解题.8.C解析:C【分析】第一次相遇行走路程为2a,第二次路程为4a…第n次还是4a,而他们的速度和为5v,求每次甲走的路程,甲第一次走的路程为S1=,第二次走的路程为S2=,第n次走的路程为Sn=,然后求出甲一共走的路程被一周4a除看有多少圈,最后考虑余下的圈数乘以一周4a即可.【详解】设正方形的边长为a,甲的速度为v,则乙的速度为4v,第一次相遇时间为t1,第二次相遇时间为t2,第n次相遇时间为tn,甲第一次走的路程为S1,第二次走的路程为S2,第n次走的路程为Sn,4vt1+vt1=2a,t1=,S1=v•t1=,4vt2+vt2=4a,t2=,S2=v•t2=,4vt3+vt3=4a,t3=,S3=v•t3=,…tn=,Sn=v•tn=,S=S1+S2+…+Sn=++…+=,当n=2017时,S=,S÷4a=403.3圈,0.3×4a=1.2a,第2017次相遇在CD上距离D为0.2a.故选择:C.【点睛】本题考查相遇地点问题,关键是以甲还是乙为考查对象,然后计算他们走的总路程,被一周4a除看余数,掌握路程时间与速度关系,确定好每次走的路程,第一次2a,以后都是4a才能得以解决问题.二、填空题9.【分析】直接利用单项式乘以单项式运算法则求出答案.【详解】解:,故答案为.【点睛】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.10.相等的角是同位角假【分析】把一个命题的条件和结论互换就得到它的逆命题,由此求解即可.【详解】解:同位角相等这个命题的逆命题是相等的角是同位角,逆命题是假命题;故答案为:①相等的角是同位角②假.【点睛】本题主要考查了同位角的定义,命题的真假,写出逆命题,解题的关键在于能够熟练掌握相关知识进行求解.11.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.12.-1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式,故答案为:-1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌握a2-b2=(+b)(a-b)是解答本题的关键.13.a>1【分析】先把两方程相加即可用a表示出x+y,再根据x+y>0即可得到关于a的不等式,求出a的取值范围即可.【详解】解:,①+②得,3x+3y=3a-3,即x+y=a-1,∵x+y>0,∴a-1>0,解得:a>1,故答案为:a>1.【点睛】本题考查的是解二元一次方程及解一元一次不等式,根据题意得出关于a的不等式是解答此题的关键.14.400【分析】根据图形得出荷塘中小桥的总长为长方形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为800m,∴小桥总长为:800÷2=400(m).故答案为:400.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为长方形的长与宽的和是解题关键.15.【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为,∴正五边形的内角和是,则每个内角的度数是.故答案为:【点解析:【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为,∴正五边形的内角和是,则每个内角的度数是.故答案为:【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.16.3【详解】分析:根据旋转的性质,把正方形CDFE经过旋转后能与正方形ABCD重合,分析对应点的不同情况,易得答案.详解:根据图形间的关系,分析可得如果把正方形CDFE经过旋转后能与正方形ABC解析:3【详解】分析:根据旋转的性质,把正方形CDFE经过旋转后能与正方形ABCD重合,分析对应点的不同情况,易得答案.详解:根据图形间的关系,分析可得如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点有C、D,以及线段CD的中点共三个.故答案为3.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.17.(1)-7a6;(2)2【分析】(1)直接利用幂的乘方、同底数幂的乘法、同底数幂的除法计算可得;(2)直接利用负整数指数幂的性质、零指数幂、去绝对值符号求解即可.【详解】(1)解:原式=-解析:(1)-7a6;(2)2【分析】(1)直接利用幂的乘方、同底数幂的乘法、同底数幂的除法计算可得;(2)直接利用负整数指数幂的性质、零指数幂、去绝对值符号求解即可.【详解】(1)解:原式=-8a6+2a6-a6=-7a6(2)解:原式=2【点睛】本题考查了幂的乘法、同底数幂的乘法、同底数幂的除法、负整数指数幂的性质、零指数幂、去绝对值符号,解题的关键是:掌握相关的运算法则.18.(1)2b(a-2b)2;(2)(m﹣n)(a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因解析:(1)2b(a-2b)2;(2)(m﹣n)(a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(m﹣n),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b)2;(2)原式=a2(m﹣n)-9(m﹣n)=(m﹣n)(a2-9)=(m﹣n)(a+3)(a-3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=[(m2+5)-6]2=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.19.(1);(2).【分析】(1)通过加减消元法计算即可;(2)先去分母,再通过加减消元法计算即可;【详解】(1),得:,解得,把代入②中得:,∴不等式组的解集为;(2),由②得:,解析:(1);(2).【分析】(1)通过加减消元法计算即可;(2)先去分母,再通过加减消元法计算即可;【详解】(1),得:,解得,把代入②中得:,∴不等式组的解集为;(2),由②得:,,③,由①+③得:,解得:,把代入①中得:;∴不等式组的解集为;【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.20.,图见解析.【分析】根据不等式的性质和解一元一次不等式的步骤分别解不等式求解集,再根据不等式组解集的确定方法和解集在数轴上的表示方法求解.【详解】解:,解不等式,解得,解不等式,解得解析:,图见解析.【分析】根据不等式的性质和解一元一次不等式的步骤分别解不等式求解集,再根据不等式组解集的确定方法和解集在数轴上的表示方法求解.【详解】解:,解不等式,解得,解不等式,解得,所以不等式组的解集是.在数轴上表示如图所示:【点睛】本题主要考查解一元一次不等式组和不等式组解集的确定方法,解集在数轴上的表示方法,解决本题的关键是要熟练掌握不等式组解集的确定方法和解集在数轴上的表示方法.三、解答题21.见解析【分析】此题要注意由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】解:∵EF=AD,∴∠2解析:见解析【分析】此题要注意由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【详解】解:∵EF=AD,∴∠2=∠3,(理由是:两直线平行,同位角相等)∵∠1=∠2,∴∠1=∠3,∴DG∥AB(理由是:内错角相等,两直线平行)∴∠BAC+∠AGD=180°(理由是:两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.【点睛】此题考查了平行线的性质与判定,解题时要注意数形结合的应用.22.(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元;(2)一共2种建造方案;(3)当地上建39个车位地下建21个车位投资最少,金额为14.4万元.【分析】(1)设新建一个地上停解析:(1)新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元;(2)一共2种建造方案;(3)当地上建39个车位地下建21个车位投资最少,金额为14.4万元.【分析】(1)设新建一个地上停车位需x万元,新建一个地下停车位需y万元,根据等量关系可列出方程组,解出即可得出答案.(2)设新建地上停车位m个,则地下停车位(60-m)个,根据投资金额超过14万元而不超过15万元,可得出不等式组,解出即可得出答案.(3)将m=38和m=39分别求得投资金额,然后比较大小即可得到答案.【详解】解:(1)设新建一个地上停车位需万元,新建一个地下停车位需万元,由题意得:,解得,故新建一个地上停车位需万元,新建一个地下停车位需万元.(2)设新建个地上停车位,由题意得:,解得,因为为整数,所以或,对应的或,故一共种建造方案.(3)当时,投资(万元),当时,投资(万元),故当地上建个车位地下建个车位投资最少,金额为万元.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解答本题的关键是仔细审题,将实际问题转化为数学方程或不等式的思想进行求解,有一定难度.23.(1)见解析;(2);(3)或【分析】(1),转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出,即可得到结论.【详解】解:(1),转化为不等式组;(2解析:(1)见解析;(2);(3)或【分析】(1),转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出,即可得到结论.【详解】解:(1),转化为不等式组;(2),不等式的左、中、右同时减去3,得,同时除以,得;(3),不等式的左、中、右同时乘以3,得,同时加5,得,的整数值或.【点睛】本题考查了解一元一次不等式组,参照方法二解不等式组是解题的关键,应用的是不等式的性质.24.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论