数学苏教七年级下册期末复习测试试题经典及解析_第1页
数学苏教七年级下册期末复习测试试题经典及解析_第2页
数学苏教七年级下册期末复习测试试题经典及解析_第3页
数学苏教七年级下册期末复习测试试题经典及解析_第4页
数学苏教七年级下册期末复习测试试题经典及解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学苏教七年级下册期末复习测试试题经典及解析一、选择题1.下列运算正确的是(

)A.a3+a3=a6 B.(a﹣b)2=a2﹣b2 C.(﹣a3)2=a6 D.a12÷a2=a62.如图所示,下列说法正确的是()A.与是内错角 B.与是同位角C.与是同旁内角 D.与是内错角3.整式的值随的取值不同而不同,下表是当取不同值时对应的整式的值:-2-1012-12-8-404则关于的方程的解为()A. B. C. D.4.若,,则与的大小关系是()A. B. C. D.由的取值而定5.若不等式组无解,则取值范围是()A. B. C. D.6.给出下列4个命题:①相等的角是对顶角;②互补的两个角中一定是一个为锐角,另一个为钝角;③平行于同一条直线的两条直线平行;④同位角相等.其中真命题的个数为()A.1 B.2 C.3 D.47.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…观察后,用你所发现的规律写出223的末位数字是()A.2 B.4 C.8 D.68.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠ADE的度数为()A.100° B.110° C.120° D.130°二、填空题9.计算:a•3a=______.10.命题“同旁内角互补”是一个_____命题(填“真”或“假”)11.已知一个多边形的每个内角都是,则这个多边形的边数是_______.12.二次三项式在实数范围内分解因式的结果是______.13.如果二元一次方程组的解是二元一次方程3x﹣2y+a=0的一个解,那么a的值是_____.14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为800m,且桥宽忽略不计,则小桥的总长为______m.15.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.16.已知平分,平分,,过做,若,则________.17.计算或化简(1)(2)(3)18.因式分解:(1);(2);(3);(4).19.解方程组:(1);(2).20.解不等式组:,并写出它的整数解.三、解答题21.已知:如图,中,在的延长线上取一点,作于点(1)如图①,若于点,那么是的平分线吗?若是,请说明理由.请完成下列证明并在下面的括号内填注依据解:是,理由如下:(已知)(垂直定义)()(两直线平行,同位角相等)()(已知)(等量代换)平分()(2)如图②,若中的角平分线相交于点.①求证:②随着的变化,的大小会发生变化吗﹖如果有变化,请直接写出与的数量关系;如果没有变化,请直接写出的度数.22.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)mn每小时拣快递数量(件)12001000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买甲型机器人不超过4台,并且使这8台机器人每小时分拣快递件数总和不少于8400件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?23.对定义一种新运算,规定:(其中均为非零常数).例如:.(1)已知.①求的值;②若关于的不等式组恰好有3个整数解,求的取值范围;(2)当时,对任意有理数都成立,请直接写出满足的关系式.学习参考:①,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.24.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.25.已知:直线,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足,,设∠EMF=α,求∠H的度数(用含α的代数式表示).【参考答案】一、选择题1.C解析:C【分析】根据整式的加法、完全平方公式、幂的乘方以及同底数幂的除法计算即可得出答案.【详解】A、原式,不符合题意;B、原式,不符合题意;C、原式,符合题意;D、原式,不符合题意,故选C.【点睛】本题考查了整式的运算,涉及合并同类项、完全平方公式、幂的乘方、同底数幂的除法等,熟练掌握相关运算法则是解决本题的关键.2.C解析:C【分析】根据同位角,同旁内角,内错角的定义可以得到结果.【详解】解:A、与不是内错角,故错误;B、与是邻补角,故错误;C、与是同旁内角,故正确;D、与是同位角,故错误;故选C.【点睛】本题主要考查了同位角,内错角,同旁内角的概念,比较简单.3.A解析:A【分析】根据题意得出方程组,求出m、n的值,再代入求出x即可.【详解】解:根据表格可知:,解得:,∴整式为代入得:-4x-4=8解得:x=-3,故选:A.【点睛】本题考查了解一元一次方程和解二元一次方程组,能求出m、n的值是解此题的关键.4.A解析:A【分析】求出P与Q的差,即可比较P、Q的大小.【详解】解:,,,故选:A.【点睛】本题主要考查整式的运算,作差比较大小是解题的关键.5.A解析:A【分析】首先解第一个不等式,再将第二个不等式解出,然后根据不等式组无解确定m的范围.【详解】解:解不等式①,得:解不等式②,得:,因为不等式组无解,所以,故选:A.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.A解析:A【分析】根据平行线的性质和角的性质逐一判定即可.【详解】解:①相等的角是对顶角;是假命题;②互补的两个角中一定是一个为锐角,另一个为钝角;是假命题;③平行于同一条直线的两条直线平行;是真命题命题;④同位角相等,是假命题;故答案为A;【点睛】本题考查了命题真假的判断,但解题的关键在于对平行线的性质、对顶角、补角概念的掌握.7.C解析:C【分析】通过观察给出算式的末尾数可发现,每四个数就会循环一次,根据此规律算出第23个算式的个位数字即可.【详解】解:通过观察给出算式的末尾数可发现,每四个数就会循环一次,∵23÷4=5……3,∴第23个算式末尾数字和第3个算式的末尾数字一样为8,即223的末位数字是8,故选:C.【点睛】本题主要考查数字的变化规律,总结归纳数字的变化规律是解题的关键.8.B解析:B【分析】根据三角形的内角和得到∠BAC=110°,由折叠的性质得到∠E=∠C=30°,∠EAD=∠CAD,∠ADC=∠ADE,根据平行线的性质得到∠BAE=∠E=30°,根据三角形的内角和即可得到结论.【详解】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∠ADE=∠ADC,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADE=∠ADC=180°﹣∠CAD﹣∠C=110°,故选:B.【点睛】本题考查了三角形的内角和,折叠的性质,平行线的性质,熟练掌握折叠的性质是解题的关键.二、填空题9.3a2【分析】根据单项式乘以单项式的运算法则即可求出答案.【详解】解:原式=3a2,故答案为:3a2.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.10.假【分析】根据平行线的性质进行判断即可.【详解】解:∵两直线平行,同旁内角互补∴命题“同旁内角互补”是一个假命题;故答案为假.【点睛】本题考查了平行线的性质和命题真假的判定,熟练掌握平行线的性质是解答本题的关键.11.18【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:多边形每一个内角都等于多边形每一个外角都等于边数故答案为【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.12.【分析】先提出负号,把括号内多项式分两组4y2-8xy两项一组,x2单独一组,把两项一组配方4y2-8xy+4x2-4x2=4(y-x)2-4x2,把-4x2与x2合并得-3x2,括号内变为,再因式分解即可.【详解】,,,,.故答案为:【点睛】本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键.13.﹣4【分析】解出方程组,求出x,y代入计算即可;【详解】解二元一次方程组得,,代入3x﹣2y+a=0得,,∴.故答案是.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.14.400【分析】根据图形得出荷塘中小桥的总长为长方形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为800m,∴小桥总长为:800÷2=400(m).故答案为:400.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为长方形的长与宽的和是解题关键.15.70°.【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,解析:70°.【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°-60°-32°=88°,∴∠5+∠6=180°-88°=92°,∴∠5=180°-∠2-108°①,∠6=180°-90°-∠1=90°-∠1②,∴①+②得,180°-∠2-108°+90°-∠1=92°,即∠1+∠2=70°.考点:1.三角形内角和定理;2.多边形内角与外角.16.35°.【分析】根据角平分线的定义可得,从而可判断出,再根据平行线的判定与性质可得结论.【详解】解:∵平分,平分,∴,∵∴∴,∵,∴∴故答案为:35°.【点睛】此解析:35°.【分析】根据角平分线的定义可得,从而可判断出,再根据平行线的判定与性质可得结论.【详解】解:∵平分,平分,∴,∵∴∴,∵,∴∴故答案为:35°.【点睛】此题主要发帖死你角平分线,平行线的性质,求出是解答本题的关键.17.(1)0;(2);(3)【分析】(1)算出零指数幂、负指数幂和绝对值计算即可;(2)根据幂的运算性质计算即可;(3)根据乘法公式计算即可;【详解】(1)原式,.(2)原式,.(3解析:(1)0;(2);(3)【分析】(1)算出零指数幂、负指数幂和绝对值计算即可;(2)根据幂的运算性质计算即可;(3)根据乘法公式计算即可;【详解】(1)原式,.(2)原式,.(3)原式,.【点睛】本题主要考查了整式混合运算,准确利用零指数幂、负指数幂、绝对值、乘法公式进行计算是解题的关键.18.(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公解析:(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公式因式分解,再用完全平方公式因式分解即可【详解】解:(1);(2);(3);(4).【点睛】本题考查因式分解,掌握因式分解的方法与技巧是解题关键.19.(1);(2).【分析】(1)利用加减消元法计算即可得出答案;(2)利用加减消元法计算即可得出答案.【详解】(1)解:①+②得:解得:将代入①得:∴此方程组的解为(2)解:①×解析:(1);(2).【分析】(1)利用加减消元法计算即可得出答案;(2)利用加减消元法计算即可得出答案.【详解】(1)解:①+②得:解得:将代入①得:∴此方程组的解为(2)解:①×3得:②×5得:③+④得:解得:将代入①中得:∴此方程组的解为【点睛】本题考查的是解二元一次方程组,熟练掌握解二元一次方程组的方法和步骤是解决本题的关键.20.;,,【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【详解】解:,由①,,解得:,由②:,,解得:,则不等式组的解集是:.解析:;,,【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【详解】解:,由①,,解得:,由②:,,解得:,则不等式组的解集是:.则整数解是:,,.【点睛】本题考查的是一元一次不等式组的解法和整数解,解题的关键是根据的取值范围,得出的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C+∠GEC=90°,∠C解析:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C+∠GEC=90°,∠CEG+∠EFA=90°,则有∠C=∠EFA,然后问题可求证;②连接CH并延长,由题意易得,然后由三角形外角的性质可得,进而根据角的和差关系可进行求解.【详解】(1)解:由题意得:(已知)(垂直定义)(同位角相等,两直线平行)(两直线平行,同位角相等)∠3(两直线平行,内错角相等)(已知)(等量代换)平分(角平分线的定义)故答案为同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①证明:∵,∴,∴∠C+∠GEC=90°,∠CEG+∠EFA=90°,∴∠C=∠EFA,∵,∴;②,理由如下:连接CH并延长,如图所示:∵的角平分线相交于点,∴,由三角形外角的性质可得,∵∠FEA+∠EFA=∠BFG+∠FBG=90°,∠EFA=∠BFG,∴∠FEA=∠FBG,∵,∴.【点睛】本题主要考查直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义,熟练掌握直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义是解题的关键.22.(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;解析:(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台;该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元【分析】(1)根据甲型机器人1台,乙型机器人2台,共需14万元和购买甲型机器人2台,乙型机器人3台,共需24万元,列出方程组,进行求解即可;(2)设该公可购买甲型机器人a台,乙型机器人(8−a)台,根据两种型号的机器人共8台,每小时分拣快递件数总和不少于8400件,列出不等式,求出a的取值范围,再利用一次函数找到费用最低值.【详解】解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人台,根据题意得:,解得:,因为,a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则,∵,∴w随a的增大而增大,当时,w最小,(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.【点睛】此题考查了二元一次方程组、一元一次不等式组、一次函数的应用,分析题意,根据关键描述语,找到合适的数量关系是解决问题的关键.23.(1)①;②42≤a<54;(2)m=2n【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.【详解】解:(1)①由题意得,解析:(1)①;②42≤a<54;(2)m=2n【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.【详解】解:(1)①由题意得,解得,②由题意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3个整数解,∴2≤<3.∴42≤a<54;(2)由题意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,∴m=2n.【点睛】本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.24.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论