深圳北亭实验学校中考数学期末几何综合压轴题模拟汇编_第1页
深圳北亭实验学校中考数学期末几何综合压轴题模拟汇编_第2页
深圳北亭实验学校中考数学期末几何综合压轴题模拟汇编_第3页
深圳北亭实验学校中考数学期末几何综合压轴题模拟汇编_第4页
深圳北亭实验学校中考数学期末几何综合压轴题模拟汇编_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深圳北亭实验学校中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题1.折纸是一种许多人熟悉的活动.近些年,经过许多人的努力,已经找到了多种将正方形折纸的一边三等分的精确折法,下面探讨其中的一种折法:(综合与实践)操作一:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合,再将正方形纸片ABCD展开,得到折痕MN;操作二:如图2,将正方形纸片ABCD的右上角沿MC折叠,得到点D的对应的点为D′;操作三:如图3,将正方形纸片ABCD的左上角沿MD′折叠再展开,折痕MD′与边AB交于点P;(问题解决)请在图3中解决下列问题:(1)求证:BP=D′P;(2)AP:BP=;(拓展探究)(3)在图3的基础上,将正方形纸片ABCD的左下角沿CD′折叠再展开,折痕CD′与边AB交于点Q.再将正方形纸片ABCD过点D′折叠,使点A落在AD边上,点B落在BC边上,然后再将正方形纸片ABCD展开,折痕EF与边AD交于点E,与边BC交于点F,如图4.试探究:点Q与点E分别是边AB,AD的几等分点?请说明理由.2.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积之间的关系问题”进行了以下探究:类比探究:(1)如图2,在中,为斜边,分别以为直径,向外侧作半圆,则面积之间的关系式为_____________;推广验证:(2)如图3,在中,为斜边,分别以为边向外侧作,,满足,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用:(3)如图4,在五边形中,,点在上,,求五边形的面积.3.问题探究:(1)如图①,已知在△ABC中,BC=4,∠BAC=45°,则AB的最大值是.(2)如图②,已知在Rt△ABC中,∠ABC=90°,AB=BC,D为△ABC内一点,且AD=2,BD=2.,CD=6,请求出∠ADB的度数.问题解决:(3)如图③,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区△ABC,且AB=AC.∠BAC=120°,点A、B、C分别是三个任务点,点P是△ABC内一个打卡点.按照设计要求,CP=30米,打卡点P对任务点A、B的张角为120°,即∠APB=120°.为保证游戏效果,需要A、P的距离与B、P的距离和尽可能大,试求出AP+BP的最大值.4.在中,于点,点为射线上任一点(点除外)连接,将线段绕点顺时针方向旋转,,得到,连接.(1)(观察发现)如图1,当,且时,BP与的数量关系是___________,与的位置关系是___________.(2)(猜想证明)如图2,当,且时,(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由.(请选择图2,图3中的一种情况予以证明或说理)(3)(拓展探究)在(2)的条件下,若,,请直接写出的长.5.综合与实践操作探究(1)如图1,将矩形折叠,使点与点重合,折痕为,与交于点.请回答下列问题:①与全等的三角形为______,与相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接、,请判断四边形的形状:______.并证明你的结论;拓展延伸(2)如图2,矩形中,,,点、分別在、边上,且,将矩形折叠,使点与点重合,折痕为,与交于点,连接.①设,,则与的数量关系为______;②设,,请用含的式子表示:______;③的最小值为______.6.已知:,过平面内一点分别向、、画垂线,垂足分别为、、.(问题引入)如图①,当点在射线上时,求证:.(类比探究)(1)如图②,当点在内部,点在射线上时,求证:.(2)当点在内部,点在射线的反向延长线上时,在图③中画出示意图,并直接写出线段、、之间的数量关系.(知识拓展)如图④,、、是的三条弦,都经过圆内一点,且.判断与的数量关系,并证明你的结论.7.等腰△ABC,AB=AC,∠BAC=120°,AF⊥BC于F,将腰AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过C作CE垂直于直线BB′,垂足为E,连接CB′.(1)问题发现:如图1,当时,的度数为_______;连接EF,则的值为________.(2)拓展探究:当,且时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②解决问题:当A,E,F三点共线时,请直接写出的值.8.问题发现:(1)正方形ABCD和正方形AEFG如图①放置,AB=4,AE=2.5,则=___________.问题探究:(2)如图②,在矩形ABCD中,AB=3,BC=4,点P在矩形的内部,∠BPC=135°,求AP长的最小值.问题拓展:(3)如图③,在四边形ABCD中,连接对角线AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,则对角线BD是否存在最大值?若存在,求出最大值;若不存在,请说明理由.9.已知:如图1所示将一块等腰三角板BMN放置与正方形ABCD的重合,连接AN、CM,E是AN的中点,连接BE.(观察猜想)(1)CM与BE的数量关系是________;CM与BE的位置关系是________;(探究证明)(2)如图2所示,把三角板BMN绕点B逆时针旋转,其他条件不变,线段CM与BE的关系是否仍然成立,并说明理由;(拓展延伸)(3)若旋转角,且,求的值.10.某数学学习小组在复习线段垂直平分线性质时,提出了以下几个问题,请你帮他们解决:[数学理解](1)点是线段垂直平分线上的一点,则的值为;[拓展延伸](2)在平面直角坐标系中,点,点在轴上,且,则点的坐标为.(3)经小组探究发现,如图,延长线段到点,使,以点为因心,长为半径作园,则对于上任一点,都有,请你证明这个结论:[问题解决](4)如图,某人乘船以25千米/时的速度沿一笔直的河从码头到码头,再立即坐车沿一笔直公路以75千米/时的速度回到住处,已知乘船和坐车所用的时间相等请在河边上确定码头的位置.(请画出示意图并简要说明理由)11.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.已知点M、N是线段AB的勾股点,若AM=1,MN=2,则BN=.(1)(类比探究)如图2,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H.求证:G、H是线段DE的勾股点.(2)(知识迁移)如图3,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连结PA,PB,若∠A=2∠B,求∠B的度数.(3)(拓展应用)如图4,点P(a,b)是反比例函数(x>0)上的动点,直线与坐标轴分别交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段AB于E、F.证明:E、F是线段AB的勾股点.12.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE的长.13.(性质探究)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.(迁移应用)(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.(拓展延伸)(4)若DF交射线AB于点F,(性质探究)中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.14.如图1,在菱形ABCD中,,点E,F分别是AC,AB上的点,且,猜想:①的值是_______;②直线DE与直线CF所成的角中较小的角的度数是_______.(2)类比探究:如图2,将绕点A逆时针旋转,在旋转的过程中,(1)中结论是否成立,就图2的情形说明理由.(3)拓展延伸:在绕点A旋转的过程中,当三点共线时,请直接写出CF的长.15.如图,四边形是正方形,点为对角线的中点.(1)问题解决:如图①,连接,分别取,的中点,,连接,则与的数量关系是_____,位置关系是____;(2)问题探究:如图②,是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.判断的形状,并证明你的结论;(3)拓展延伸:如图③,是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.若正方形的边长为1,求的面积.16.如图1,已知,,点D在上,连接并延长交于点F,(1)猜想:线段与的数量关系为_____;(2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.17.综合与实践:问题情境:在数学课上,以“等腰直角三角形为主体,以点的对称为基础,探究线段间的变化关系”.如图1,在中,,,点为的角平分线上一动点但不与点重合,作点关于直线的对称点为,连接并延长交延长线于点,连接并延长交直线于点.探究实践:(1)勤奋小组的同学发现,请写出证明;探究发现:(2)智慧小组在勤奋小组的基础上继续探究,发现线段,与存在数量关系,请写出他们的发现并证明;探究拓展:(3)如图2,奇异小组的同学在前两个小组探究的基础上,连接,得到三条线段,与存在一定的数量关系,请直接写出.18.石家庄某学校数学兴趣小组利用机器人开展数学活动,在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计,兴趣小组成员探究这两个机器人迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.(观察)①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度.②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为35个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度.(发现)设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度,兴趣小组成员发现了y与x的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示)①a=;②分别求出各部分图象对应的函数解析式,并在图2中补全函数图象.(拓展)设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度,若这两个机器人在第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)19.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.20.△ABC中,∠BAC=α°,AB=AC,D是BC上一点,将AD绕点A顺时针旋转α°,得到线段AE,连接BE.(1)(特例感知)如图1,若α=90,则BD+BE与AB的数量关系是.(2)(类比探究)如图2,若α=120,试探究BD+BE与AB的数量关系,并证明.(3)(拓展延伸)如图3,若α=120,AB=AC=4,BD=,Q为BA延长线上的一点,将QD绕点Q顺时针旋转120°,得到线段QE,DE⊥BC,求AQ的长.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.(1)见解析;(2)2:1;(3)点Q是AB边的四等分点,点E是AD边的五等分点,理由见解析【分析】(1)如图1,连接PC,根据正方形的性质、HL定理证明△CD′P≌△CBP,根据全等三角形的性解析:(1)见解析;(2)2:1;(3)点Q是AB边的四等分点,点E是AD边的五等分点,理由见解析【分析】(1)如图1,连接PC,根据正方形的性质、HL定理证明△CD′P≌△CBP,根据全等三角形的性质得出结论;(2)设BP=x,根据翻转变换的性质、勾股定理列出方程,解方程即可;(3)如图2,连接QM,证明Rt△AQM≌Rt△D′QM(HL),得到AQ=D′Q,设正方形ABCD的边长为1,AQ=QD′=y,根据勾股定理列出方程,解方程即可.【详解】(1)证明:如图1,连接PC.∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠MD′C=∠D=90°,∴∠CD′P=∠B=90°,在Rt△CD′P和Rt△CBP中,,∴Rt△CD′P≌Rt△CBP(HL),∴BP=D′P;(2)解:设正方形纸片ABCD的边长为1.则AM=DM=D′M=.设BP=x,则MP=MD′+D′P=DM+BP=+x,AP=1﹣x,在Rt△AMP中,根据勾股定理得AM2+AP2=MP2.∴()2+(1﹣x)2=(+x)2,解得x=,∴BP=,AP=,∴AP:BP=2:1,故答案为:2:1.(3)解:点Q是AB边的四等分点,点E是AD边的五等分点.理由:如图2,连接QM.∴∠QD′M=180°﹣∠MD′C=90°,∴∠QD′M=∠A=90°.在Rt△AQM和Rt△D′QM中,,∴Rt△AQM≌Rt△D′QM(HL),∴AQ=D′Q,设正方形ABCD的边长为1,AQ=QD′=y,则QP=AP﹣AQ=﹣y.在Rt△QPD′中,根据勾股定理得QD′2+D′P2=QP2.∵D′P=BP=,∴y2+()2=(﹣y)2,解得y=.∴AQ:AB=1:4,即点Q是AB边的四等分点,∵EF∥AB,∴,即,解得AE=.∴点E为AD的五等分点.【点睛】本题是四边形综合题,考查了正方形的性质,折叠的性质,翻转变换的性质全等三角形的判定和性质,勾股定理等知识,熟练掌握折叠的性质及方程思想是解题的关键.2.(1)S1+S2=S3,(2)成立,证明见解析,(3)【分析】(1)分别写出三个半圆的面积,再利用勾股定理转化即可.(2)先证明三个三角形相似,再计算出三个三角形的面积,即可得出结论.(3)解析:(1)S1+S2=S3,(2)成立,证明见解析,(3)【分析】(1)分别写出三个半圆的面积,再利用勾股定理转化即可.(2)先证明三个三角形相似,再计算出三个三角形的面积,即可得出结论.(3)先添加辅助线,在第二问的思路下,先证明三个三角形相似,得出三个三角形的面积关系,再利用30°、45°的直角三角形计算出相应的边,计算出五边形的面积即可.【详解】解:(1)设AB=b,AC=a,BC=c.则有:所以在Rt△ABC中,有a2+b2=c2,且故答案为:S1+S2=S3(2)∵∴设AB、AC、BC边上的高分别为h1,h2,h3∴,设AB=b,AC=a,BC=c则∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)连接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,则AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=则PD=1+∴=所以五边形的面积为:【点睛】本题考查勾股定理、与勾股定理有关的图形问题、相似三角形.是中考的常考知识.3.(1)4(2)135°(3)PA+PB的最大值为米【分析】(1)作△ABC的外接圆,连接OA,OB,OC,求出OA=OB=OC=2,可得结论;(2)将△ABD绕点B顺时针旋转90°得到△CBT解析:(1)4(2)135°(3)PA+PB的最大值为米【分析】(1)作△ABC的外接圆,连接OA,OB,OC,求出OA=OB=OC=2,可得结论;(2)将△ABD绕点B顺时针旋转90°得到△CBT,连接DT,利用勾股定理的逆定理证明∠CTD=90°,可得结论;(3)将△ABP绕点A逆时针旋转120°得到△ACK,延长CK交PA延长线于J,作△PJC的外接圆,连接OP,OC,OJ,证明PA+PB=JC,再求出JC的最大值即可求解.【详解】(1)如图①,作△ABC的外接圆,连接OA,OB,OC,∵∠BOC=2∠BAC=90°,OB=OC∴△OBC是等腰直角三角形∵BC=4∴OB=OC=2=OA∵AB≤OA+OB∴AB≤4∴AB的最大值为4故答案为:4;(2)如图②,将△ABD绕点B顺时针旋转90°得到△CBT,连接DT由题意可得DT=BD=2,CT=AD=2∵CD=6∴∴∠CTD=90°,∵△BDT是等腰直角三角形∴∠DTB=45°∴∠CTB=45°+90°=135°∴∠ADB=∠CTB=135°(3)如图③,将△ABP绕点A逆时针旋转120°得到△ACK,延长CK交PA延长线于J,作△PJC的外接圆,连接OP,OC,OJ∵∠PAK=120°,∠AKC=∠APB=120°∴∠JAK=∠JKA=60°∴∠AJK=60°∴△JAK是等边三角形∴AK=KJ∴∠COP=2∠AJK=120°∵PC=30∴OP=OC=OJ=∵CJ≤OJ+OC∴CJ≤∵PA+PB=AK+CK+KJ+KC=JC∴PA+PB的最大值为米.【点睛】此题主要考查旋转的综合运用,解题的关键是熟知三角形外接圆的性质、三角函数的应用、旋转的性质、等边三角形的性质、勾股定理的应用及三角形的三边关系的应用.4.(1),;(2)成立,不成立,与的关系为,见解析;(3)2或14【分析】(1)连接AE,证明△ABC、△APE为等边三角形,再证明,根据全等三角形的性质可得BP=CE,,再求得,即可得,所有.解析:(1),;(2)成立,不成立,与的关系为,见解析;(3)2或14【分析】(1)连接AE,证明△ABC、△APE为等边三角形,再证明,根据全等三角形的性质可得BP=CE,,再求得,即可得,所有.(2)成立,不成立,与的关系为.选图2证明:连接,易证,根据相似三角形的性质可得,,根据等腰直角三角形的性质可得,由此可得,结论可证;选图3证明,类比图2的证明方法即可;(3)分图2和图3两种情况求CE的长即可.【详解】(1)如图,连接AE,∵,且,∴△ABC为等边三角形,∴,AB=AC,∵,且,∴△APE为等边三角形,∴,AP=AE,∴,∴;在△BAP和△CAE中,,∴,∴BP=CE,,∵,,,∴∠ABP=30°,∴,∴,∴.故答案为:,.(2)成立,不成立,与的关系为.理由如下:选图2证明:连接,由题意可知:、均为等腰直角三角形,∴,,∴,即;又∵,∴,∴,,∵,,∴,∴,∴,∴,.选图3证明:理由如下:连接,由题意可知:、均为等腰直角三角形,∴,,∴,即,又∵,∴,∴,,∵,,∴,∴,∴,∴,;(3)或14.如图,∵,∴,∵,∴在中,,∴,由(2)知:,∴;如图,同理可得,∴,∴.综上:的长为2或14.【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练运用相关知识是解决问题的关键.5.(1)①;或;证明见解析;②菱形,证明见解析;(2)①;②;③【分析】(1)①利用矩形的性质与轴对称的性质证明如图1,连接证明即可得到答案;②如图1,由①得:再证明四边形为平行四边形解析:(1)①;或;证明见解析;②菱形,证明见解析;(2)①;②;③【分析】(1)①利用矩形的性质与轴对称的性质证明如图1,连接证明即可得到答案;②如图1,由①得:再证明四边形为平行四边形与可得结论;(2)①如图2,连接由折叠可得:再利用勾股定理可得答案;②如图3,连接交于证明四边形是菱形,可得从而可得答案;③由②得:可得,再利用二次函数的性质可得答案.【详解】解:(1)①矩形由折叠可得:如图1,连接由折叠可得:同理:故答案为:,或②如图1,由①得:矩形四边形为平行四边形,四边形为菱形,(2)①如图2,连接由折叠可得:矩形,,故答案为:②如图3,连接交于矩形重合,同理可得:由对折可得:四边形是菱形,,,故答案为:③由②得:当时,最小,最小值为的最小值为:故答案为:【点睛】本题考查的是全等三角形的判定与性质,平行四边形的判定,矩形的性质,菱形的判定与性质,勾股定理的应用,二次函数的性质,熟练掌握以上知识是解题的关键.6.【问题引入】见解析;【类比探究】(1)见解析;(2)图见解析,;【知识拓展】,证明见解析【分析】[问题引入]利用AAS证明△POE≌△POD,即可得出结论;[类比探究](1)过点F作FN解析:【问题引入】见解析;【类比探究】(1)见解析;(2)图见解析,;【知识拓展】,证明见解析【分析】[问题引入]利用AAS证明△POE≌△POD,即可得出结论;[类比探究](1)过点F作FN⊥OB,FM⊥OA,垂足分别为N、M,FM与PE交于点Q,先证明△PFQ为等边三角形,得出FG=PH,再运用矩形性质得出OM=OF,ON=OF,即可证得结论;(2)作FN⊥OB于点N,FM⊥OA于点M,射线FM交PE于点Q,作PH⊥FQ于点H,FG⊥PQ于点G,同(1)可证:NE=FG=PH=MD,ON=OM=OF,即可得出结论;[知识拓展]过点O作OM⊥AB,ON⊥EF,OQ⊥CD,垂足分别为M、N、Q,利用垂径定理可得出PB-PA=2PM,PF-PE=2PN,PD-PC=2PQ,再运用[类比探究]得:PM+PN=PQ,从而证得结论.【详解】[问题引入]证明:∵,,,∴.∵,∴.∴.[类比探究](1)过点作,,垂足分别为、,与交于点.∵,,,则为等边三角形,、边上的高相等,即.在矩形、矩形中,有,,∴.∴.∵,,∴,同理,,∴,∴.(2)结论:.作于点,于点,射线与的交点为,作于点,于点,同(1)可证,,∴.[知识拓展]数量关系:.理由如下:过点作,,,垂足分别为、、.由垂径定理可得.∴.同理,,由[类比探究]得,∴,∴.∴.【点睛】本题是圆的综合题,考查了全等三角形判定和性质,等边三角形判定和性质,角平分线性质,矩形性质,垂径定理等,熟练掌握全等三角形判定和性质及垂径定理等相关知识是解题关键.7.(1)∠CB′E=60°,;(2)①两个结论成立,理由见解析;(3)或.【分析】(1)根据旋转的性质和等腰三角形的性质以及直角三角形的性质解答即可;(2)①根据旋转的性质和等腰三角形的性质和直解析:(1)∠CB′E=60°,;(2)①两个结论成立,理由见解析;(3)或.【分析】(1)根据旋转的性质和等腰三角形的性质以及直角三角形的性质解答即可;(2)①根据旋转的性质和等腰三角形的性质和直角三角形的性质解答即可;②当A,E,F三点共线时,分两种情况讨论,利用三角函数解答即可.【详解】解:(1)∵AB=AC,∠BAC=120°,AF⊥BC,∴∠ABC=∠ACB=30°,BF=FC,根据旋转的性质得:AB=AC=AB′,∴∠ABB′=∠AB′B==70°,∵AC=AB′,∠B′AC=120°-40°=80°,∴∠AB′C==50°,∴∠CB′E=180°-70°-50°=60°,连接EF,∵BF=FC,则EF为直角三角形BEC斜边上的中线,∴EF=BF=FC,在Rt△ABF中,,∴;(2)①两个结论成立,理由如下:连接EF,根据旋转的性质得:AB=AC=AB′,等腰△ABB′中,∠BAB′=α,则∠AB′B==90°−α,等腰△AB′C中,∠CAB′=α−120°,则∠AB′C==150°−α,∴;∵AB=AC,AF⊥BC.∴∠FAC=60°,Rt△CEB′中,=sin60°=,Rt△CFA中,=sin60°=,∴,∵∠FCE=∠ACB′=30°+∠ACE,∴△CEF~△CB′A∴;②当A,E,F三点共线时,分以下两种情况讨论,(Ⅰ)当点E在FA的延长线上时,如图,由①可知,∠B'=60°,∵CE⊥BB',而BC=2EF=2BF,EB=CE,设BF=x,则EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB+B'E=,∴;(Ⅱ)当点E在AF的延长线上时,如图,同理可得,∠CB'E=60°,BC=2EF=2BF,∵CE⊥BB',∴∠CEB'=∠CEB=90°,EB=CE,设BF=x,则EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB-B'E=,∴;综上,的值为或.【点睛】本题考查了旋转的性质、等腰三角形的性质、全等三角形的判定和性质、特殊角的三角函数值等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1);(2)AP的最小值为;(3)存在,BD的最大值为6+6【分析】(1)连接AC、AF、DG、CF,证△ADG∽△ACF,根据线段比例关系可求;(2)以BC为斜边作等腰直角三角形BOC,以解析:(1);(2)AP的最小值为;(3)存在,BD的最大值为6+6【分析】(1)连接AC、AF、DG、CF,证△ADG∽△ACF,根据线段比例关系可求;(2)以BC为斜边作等腰直角三角形BOC,以O为圆心BO为半径画圆,则P的运动轨迹在矩形ABCD内的劣弧BC上,连接AO交弧BC于点P,此时AP最小,根据给出数据求值即可;(3)以AB为斜边向下做等腰直角三角形AEB,连接CE,根据△DAB∽△CAE,得出BD=CE,以AB为斜边向上做等腰直角三角形AOB,以O为圆心OA为半径画圆,根据C点的轨迹求出CE最大值,即求出BD最大值.【详解】解:(1)如图①,连接AC、AF、DG、CF,在正方形ABCD和正方形AEFG中,AB=4,AE=2.5,∴AC=AB,AF=AE,AG=AE=2.5,AD=AB=4,∴,又∵∠DAG=∠DAC-∠GAC=45°-∠GAC,∠CAF=∠GAF-∠GAC=45°-∠GAC,∴∠DAG=∠CAF,∴△DGA∽△CFA,∴,故答案为;(2)如图②,以BC为斜边作等腰直角三角形BOC,以O为圆心BO为半径画圆,则∠BPC作为圆周角刚好是135°,∴P的运动轨迹在矩形ABCD内的劣弧BC上,连接AO交弧BC于点P,此时AP最小,作OE垂直AB延长线于点E,∵△BOC为等腰直角三角形,BC=4,∴OB=OC=BC=×4=2,∠OBC=45°,∴∠OBE=90°-∠OBC=90°-45°=45°,又∵OE⊥AE,∴△BEO为等腰直角三角形,∴BE=OE=OB=×2=2,又∵AB=3,∴AE=AB+BE=3+2=5,∴,∵OP=OB=2,∴AP=AO-OP=-2,即AP的最小值为-2;(3)存在,如图3,以AB为斜边向下做等腰直角三角形AEB,连接CE,则∠EAB=45°,,∵AC=AD,∠ACD=90°,∴DAC=45°,,∴,∠DAB=∠CAE=45°,∴△DAB∽△CAE,∴,∴BD=CE,∴当CE最大时,BD取最大值,以AB为斜边向上做等腰直角三角形AOB,以O为圆心OA为半径画圆,∵∠AOB=90°,∠ACB=45°,∴点C在优弧AB上,由图知当C在OE延长线C'位置时C'E有最大值,此时C'E=OE+OC',∵AB=6,△AOB和△AEB都是以AB为斜边的等腰直角三角形,∴四边形AOBE为正方形,∴OE=AB=6,OC'=OA=AB=3,∴CE的最大值为6+3,∵BD=CE,∴BD的最大值为×(6+3)=6+6.【点睛】本题主要考查了图形的变换,三角形相似,等腰直角三角形,正方形,圆周角,圆心角等知识点,熟练掌握并灵活运用这些知识点是解题的关键.9.(1);;(2)成立,理由见解析;(3)【分析】(1)【观察猜想】根据正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可证明Rt△BAN≌Rt△BCM(HL),又根据E是A解析:(1);;(2)成立,理由见解析;(3)【分析】(1)【观察猜想】根据正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可证明Rt△BAN≌Rt△BCM(HL),又根据E是AN的中点,即可证明CM=2BE,根据等边对等角得到∠ABE=∠BCM,∠ABE+∠BMC=90∘即可证明CM⊥BE.(2)【探究证明】延长BE至F使EF=BE,连接AF,先证明△AEF≌△NEB,再证明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,进而求得∠BCM+∠EBC=90°,即可证明EB⊥CM;(3)[拓展延伸]由a=45°得到∠ABE=15°,由前面可得∠BMC=30°,过C作CG⊥MB于G,设CG为m,则BC=m,MG=m,所以MB=BN=m-m,最后求得的值.【详解】解:【观察猜想】(1)CM=2BE;CM⊥BE;如图1所示图1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中点,∴BE=AE=NE=AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90∘∴∠BPM=90∘∴CM⊥BE.【探究证明】(2)CM=2BE,CM⊥BE仍然成立.如图2所示,延长BE至F使EF=BE,连接AF,∵AE=EN,∠AEF=∠NEB,EF=BE,∴△AEF≌△NEB∴AF=BN,∠F=∠EBN,∴AF//BN,AF=BM,∴∠FAB+∠ABN=180°,∵∠MBN=∠ABC=90°,∴∠NBC+∠ABN=90°,∴∠NBA+∠FAD=90°,∴∠CBN=∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸](3)由a=45°得∠MBA=∠ABN=45°,∵∠NBE=2∠ABE,∴∠ABE=15°,由前面可得∠MCB=∠ABE=15°,∠MBC=135°,∴∠BMC=180°-15°-135°=30°,如图3所示,过C作CG⊥MB于G,图3设CG为m则BC=m,MG=m,所以MB=BN=m-m,∴.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等腰直角三角形的性质,直角三角形的性质,解题的关键是灵活运用以上性质解决问题.10.(1)1;(2)或;(3)见解析;(4)以的中点为圆心,为半径作,则与河边的交点为所求点的位置,画出示意图见解析;简要理由见解析.【分析】(1)直接利用垂直平分线的性质证明即可;(2)根据求解析:(1)1;(2)或;(3)见解析;(4)以的中点为圆心,为半径作,则与河边的交点为所求点的位置,画出示意图见解析;简要理由见解析.【分析】(1)直接利用垂直平分线的性质证明即可;(2)根据求出的长,再根据,即可求出点的坐标;(3)连接,根据推出,从而推出,证明,即可证明;(4)在线段上作点,使,在线段的延长线上作点,使,以的中点为圆心,为半径作,则与河边的交点为所求点的位置.同(3)证明即可证明结论.【详解】(1)∵点是线段垂直平分线上的一点,∴,∴,故答案为:1;(2)∵∴,∵,∴,∴点的坐标为或,故答案为:或;(3)如图,连接,∵,,∴,∵的半径为,∴,∴.∴,∴.∵,∴,∴.∴.(4)如图,在线段上作点,使,在线段的延长线上作点,使.以的中点为圆心,为半径作,则与河边的交点为所求点的位置.简要理由:由于水路速度为陆路速度的,且时间相等,所以水路的距离必为陆路距离的,即需,连接,同(3)可证,∵,,∴,∴,∴,同理可得,∴又∵,由此,得.【点睛】本题主要考查了相似三角形的判定和性质,垂直平分线的性质,准确的理解题意画出图形和作出正确的辅助线是解题的关键.11.BN=或;(1)见解析;(2)∠B=15°;(3)见解析.【分析】定义:根据勾股点的定理,即可求出BN的长;(1)根据已知条件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=B解析:BN=或;(1)见解析;(2)∠B=15°;(3)见解析.【分析】定义:根据勾股点的定理,即可求出BN的长;(1)根据已知条件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=BN,根据条件求出(BN)2=(MN)2+(AM)2,即可得到结果;(2)连接PD,根据已知条件可得PC2+BD2=CD2,进而求出∠PDC=∠A,在Rt△PCD中,得到2∠A+∠A=90°,即可得到结果;(3)根据已知条件先求得点F的坐标为(2﹣,),即可求得BF、EF,根据已知条件可得BF2+AE2=16+2a2﹣8a+﹣=EF2,即可求得结果;【详解】定义:∵点M、N是线段AB的勾股点,∴或,∴BN=.(1)如图,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是线段DE的勾股点.(2)如图所示,连接PD,∵AC=PC,∴∠A=∠APC,∴∠PCD=2∠A,∵C,D是线段AB的勾股点,∴AC2+BD2=CD2,∴PC2+BD2=CD2,∵CD是⊙O的直径,∴∠CPD=90°,∴PC2+PD2=CD2,∴PD=BD,∴∠PDC=2∠B,∵∠A=2∠B,∴∠PDC=∠A,在Rt△PCD中,∵∠PCD+∠PDC=90°,∴2∠A+∠A=90°,解得∠A=30°,则∠B=∠A=15°.(3)∵点P(a,b)是反比例函数y=(x>0)上的动点,∴b=.∵直线y=﹣x+2与坐标轴分别交于A、B两点,∴点B的坐标为(0,2),点A的坐标为(2,0);当x=a时,y=﹣x+2=2﹣a,∴点E的坐标为(a,2﹣a);当y=时,有﹣x+2=,解得:x=2﹣,∴点F的坐标为(2﹣,).∴BF==(2﹣),EF=,=|2﹣a﹣|,AE==(2﹣a).∵BF2+AE2=16+2a2﹣8a+﹣=EF2,∴以BF、AE、EF为边的三角形是一个直角三角形,∴E、F是线段AB的勾股点.【点睛】本题主要考查了勾股定理的扩展应用,结合中位线定理、圆周角定理等知识点解题是关键.12.(1)①AF=BE,②90°;(2)AF=BE,∠ABE=α.理由见解析;(3)BE的长为2或4.【分析】(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=解析:(1)①AF=BE,②90°;(2)AF=BE,∠ABE=α.理由见解析;(3)BE的长为2或4.【分析】(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得、,代入数据求解即可;【详解】(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴,∵AB=8,∴BE=AF=4,故BE的长为2或4.【点睛】本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.13.(1)等腰三角形,理由见解析;(2)见解析;(3);(4)或【分析】(1)如图1中,△AFG是等腰三角形,利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG解析:(1)等腰三角形,理由见解析;(2)见解析;(3);(4)或【分析】(1)如图1中,△AFG是等腰三角形,利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【详解】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,,∴,设CD=2x,AC=3x,则AD=,∴.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由题意:=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由题意:=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,综上所述,tan∠BAE的值为或.【点睛】本题是一道综合题,主要涉及到等腰三角形的判定及其性质、全等三角形的判定和性质、三角形中位线定理、相似三角形的判定及其性质、勾股定理的应用等知识点,解题的关键是综合运用所学到的相关知识.14.(1)①;②30度;(2)成立,理由见解析;(3)或,理由见解析.【分析】①由得;②延长DE、CF交于K,由得,再由可得(2)连接BD交AC于点G,先证明可得,再利用“8”字型可得;(3解析:(1)①;②30度;(2)成立,理由见解析;(3)或,理由见解析.【分析】①由得;②延长DE、CF交于K,由得,再由可得(2)连接BD交AC于点G,先证明可得,再利用“8”字型可得;(3)过点A作,交直线DE于M,再结合(2)中相似分类讨论即可;【详解】(1)①∵菱形ABCD中,∴,∵∴∴∴;②如解题图1,延长DE、CF交于K,∵∴,∵∴∴∴∴(2)成立,理由如下如解题图2,连接BD交AC于点G,∵四边形ABCD是菱形,∴,,即直线DE与CF夹角所成的较小角的度数是30度(3)或理由如下:(1)过点A作,交直线DE于M,如解题图3:当D,E,F三点共线时,由(2)得,(2)如解题图4,过点A作,当D,E,F三点共线时,由(2)得【点睛】本题综合考察相似三角形的性质与判定,菱形的性质,30°直角三角形的性质,熟练运用性质进行角度转换是解题的关键15.(1),;(2)的形状是等腰直角三角形,理由见解析;(3)【分析】(1)根据题意可得PQ为△BOC的中位线,再根据中位线的性质即可求解;(2)连接并延长交于点,根据题意证出,为等腰直角三角形,解析:(1),;(2)的形状是等腰直角三角形,理由见解析;(3)【分析】(1)根据题意可得PQ为△BOC的中位线,再根据中位线的性质即可求解;(2)连接并延长交于点,根据题意证出,为等腰直角三角形,也为等腰直角三角形,由且可得是等腰直角三角形;(3)延长交边于点,连接,.证出四边形是矩形,为等腰直角三角形,,再证出为等腰直角三角形,根据图形的性质和勾股定理求出O′A,O′B和BQ的长度,即可计算出的面积.【详解】解:(1)∵点P和点Q分别为,的中点,∴PQ为△BOC的中位线,∵四边形是正方形,∴AC⊥BO,∴,;故答案为:,;(2)的形状是等腰直角三角形.理由如下:连接并延长交于点,由正方形的性质及旋转可得,∠,是等腰直角三角形,,.∴,.又∵点是的中点,∴.∴.∴,.∴,∴.∴为等腰直角三角形.∴,.∴也为等腰直角三角形.又∵点为的中点,∴,且.∴的形状是等腰直角三角形.(3)延长交边于点,连接,.∵四边形是正方形,是对角线,∴.由旋转得,四边形是矩形,∴,.∴为等腰直角三角形.∵点是的中点,∴,,.∴.∴,.∴.∴.∴为等腰直角三角形.∵是的中点,∴,.∵,∴,,∴.∴.【点睛】本题考查正方形的性质、等腰直角三角形的判定与性质、旋转图形的性质、三角形中位线定理、全等三角形的判定与性质和勾股定理,根据题意作出辅助线构造全等三角形是解题的关键.16.(1)AF=EF;(2)成立,理由见解析;(3)12【分析】(1)延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;(2解析:(1)AF=EF;(2)成立,理由见解析;(3)12【分析】(1)延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;(2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;(3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.【详解】解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延长DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(2)仍旧成立,理由如下:延长DF到G点,并使FG=DC,连接GE,如下图所示设BD延长线DM交AE于M点,∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,又延长DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF,∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(3)如下图所示:∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AECG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四边形AEGC为矩形,∴AC=EG,且AB=BE,∴Rt△ACBRt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDBRt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知:.故答案为:.【点睛】本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线.17.(1)见解析;(2),见解析;(3)【分析】(1)连接CF,证明,即可解决问题;(2)连接EF,利用(1)中两个三角形全等的性质、四边形内角和及图形中互补的角推导论证∠EGF=90°,再利用勾解析:(1)见解析;(2),见解析;(3)【分析】(1)连接CF,证明,即可解决问题;(2)连接EF,利用(1)中两个三角形全等的性质、四边形内角和及图形中互补的角推导论证∠EGF=90°,再利用勾股定理即可解决问题;(3)证明RT△CNE≌RT△CMF,RT△GCN≌RT△GCM,即可解决问题.【详解】(1)证明:如图,连接.∵平分,,∴.∵,关于对称,∴,.∴.在和中,∴.∴.(2)解:结论:.理由如下:连接,.∵,∴.∵,∴.∴.∵,∴.∴,.∵,∴.(3)如下图,结论.理由如下:连接CG,CF,作CM⊥BF于点F,CN⊥AG于点N,∵,∴CN=CM,∵∠CNE=∠CMF=90°,CE=CF,∴RT△CNE≌RT△CMF.∴EN=FM,∵∠CNG=∠CMG=90°,CG=CG,∴RT△GCN≌RT△GCM,∴GN=GM,∠CGN=∠CGM=45°,∴CG=GN,∴GE+GF=GN-EN+GM+MF=2GN=CG.故GE+GF=CG.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质、勾股定理、等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.18.【观察】①90;②105;【发现】①50;②y=,补全图象见解析;【拓展】0<x≤12或48≤x≤72【分析】【观察】①先据题意求出两个机器人速度的关系,再确定第二次迎面相遇的位置,然后设此时相解析:【观察】①90;②105;【发现】①50;②y=,补全图象见解析;【拓展】0<x≤12或48≤x≤72【分析】【观察】①先据题意求出两个机器人速度的关系,再确定第二次迎面相遇的位置,然后设此时相遇点距点A为m个单位,根据题意列方程即可求出结果;②仿照①的解题思路和方法解答即可;【发现】①当点第二次相遇地点刚好在点B时,根据题意可列方程150﹣x=2x,解出的x的值即为a的值;②分0<x≤50与50<x<75两种情况,分别求出正比例函数与一次函数的关系式,进一步即可补全函数图象;【拓展】分三种情况画出图形,然后根据题意得出相应的分式方程,解方程即可得出y与x的关系,进而可得关于x的不等式,解不等式即可得到结论.【详解】解:【观察】①∵相遇地点与点A之间的距离为30个单位长度,∴相遇地点与点B之间的距离为150﹣30=120个单位长度,设机器人甲的速度为v,则机器人乙的速度为v=4v,∴机器人甲从相遇点到点B所用的时间为,机器人乙从相遇地点到点A再返回到点B所用时间为,而,∴机器人甲与机器人乙第二次迎面相遇时,机器人乙从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论