数学苏教版七年级下册期末真题经典套题答案_第1页
数学苏教版七年级下册期末真题经典套题答案_第2页
数学苏教版七年级下册期末真题经典套题答案_第3页
数学苏教版七年级下册期末真题经典套题答案_第4页
数学苏教版七年级下册期末真题经典套题答案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学苏教版七年级下册期末真题经典套题答案一、选择题1.下列运算正确的是()A. B.(a3)3=a6 C.(ab)2=ab2 D.a3·a2=a5答案:D解析:D【分析】分别根据合并同类项,幂的乘方运算法则,积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【详解】解:A.a-3与a3不属于同类项,不能合并,故A选项不合题意;B.(a3)3=a9,故B选项不符合题意;C.(ab)2=a2b2,故C选项不符合题意;D.a3•a2=a5,故D选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.2.如图,直线a,b被直线c所截,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠5答案:A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.3.数轴上三个点表示的数分别为p、r、s.若p-r=5,s-p=2,则s-r等于()A.3 B.-3 C.7 D.-7答案:C解析:C【详解】试题分析:利用已知将两式相加进而求出答案.解:∵p﹣r=5,s﹣p=2,∴p﹣r+s﹣p=5+2则s﹣r=7.故答案为7.考点:数轴.4.若ab,则下列式子错误的是()A. B. C. D.答案:D解析:D【分析】依据不等式的性质求解即可.【详解】A、不等式的两边都加3,不等号的方向不变,故A不符合题意;B、不等式的两边都减去b,不等号的方向不变,故B不符合题意;C、不等式的两边都乘以,不等号的方向不变,故C不符合题意;D、不等式的两边都乘以-3,不等号的方向改变,故D符合题意;故选:D.【点睛】本题主要考查了不等式的性质,掌握不等式的性质是解题的关键.5.若不等式组有解,则a的取值范围是()A.a≤3 B.a<3 C.a<2 D.a≤2答案:B解析:B【分析】本题首先分别求解两个不等式,继而得出x取值范围,最后根据不等式组有解确定参数a的范围.【详解】∵>,∴>.∵<,∴<.若满足不等式组有解,则:<,有<.故选:B.【点睛】本题考查不等式组的求解以及参数的确定,求解不等式过程可将参数视作已知量,按照常规解法求解,最后再利用题目限制条件反求参数.6.下列命题:①若,则;②直角三角形的两个锐角互余:③如果,那么④个角都是直角的四边形是正方形.其中,原命题和逆命题均为真命题的有()A.个 B.个 C.个 D.个答案:B解析:B【解析】【分析】写出原命题的逆命题后进行判断即可确定正确的选项【详解】解:①错误,为假命题;其逆命题为若a>b,则|a|>|b|,错误,为假命题;②直角三角形的两个锐角互余,正确,为真命题;逆命题为两个角互余的三角形为直角三角形,正确,为真命题;③如果a=0,那么ab=0,正确,为真命题;其逆命题为若ab=0,那么a=0,错误,为假命题;④4个角都是直角的四边形是正方形,错误,是假命题,其逆命题为正方形的四个角都是直角,为真命题.原命题和逆命题均是真命题的有1个,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.7.设一列数,,,…,,…中任意三个相邻的数之和都是,已知,,,则()A. B. C. D.答案:A解析:A【分析】由题可知,a1,a2,a3每三个循环一次,可得a30=a3,a92=a2,所以x=4-x,即可求a2=2,a3=11,再由三个数的和是20,可求a2021=a2=2.【详解】解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,……∴a1,a2,a3每三个循环一次,∵30÷3=10,∴a30=a3,∵92÷3=30…2,∴a92=a2,∴x=4-x,∴x=2,∴a2=2,∵2021÷3=673…2,∴a2021=a2=2,故选:A.【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律,利用有理数的运算解题是关键.8.已知△PQR是直角三角形,∠R为直角,线段RQ比线段PR短,M为线段PQ的中点,N为线段QR的中点,S是三角形内部的点,线段MN比线段MS长,图中,符合以上表述的是()A. B. C. D.答案:D解析:D【分析】根据点所在的位置和线段的长短进行逐一判断即可.【详解】解:∵△PQR是直角三角形,∠R为直角,线段RQ比线段PR短,M为线段PQ的中点,N为线段QR的中点,S是三角形内部的点,线段MN比线段MS长,∴图中,符合以上表述的是D选项,故选D.【点睛】本题主要考查了点的位置,线段的长短,解题的关键在于能够根据题意进行求解.二、填空题9.计算:=____________.解析:【解析】【分析】根据单项式与单项式的乘法法则计算即可.【详解】=.故答案为.【点睛】本题考查了单项式的乘法,单项式与单项式的乘法法则是,把它们的系数相乘,字母部分的同底数的幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.10.以下四个命题:①-的立方根是;②要调查一批灯泡的使用寿命适宜用抽样调查;③两条直线被第三条直线所截,同旁内角互补;④已知∠ABC与其内部一点D,过点D作DE∥BA,作DF∥BC,则∠EDF=∠B.其中假命题的序号______.答案:A解析:①③④【分析】利用立方根的定义对①进行判断;根据普查和抽样调查的特点对②进行判断;根据平行线的性质对③进行判断.画好符合题意的图形,利用推理的方法判断④.【详解】解:的立方根是,所以①为假命题;要调查一批灯泡的使用寿命适宜用抽样调查,所以②为真命题;两条平行直线被第三条直线所截,同旁内角互补,所以③为假命题;已知∠ABC与其内部一点D,过D点作DE∥BA,作DF∥BC,则或所以④为假命题.理由如下:.故答案为①③④.【点睛】本题考查了命题的“真”“假”判断.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可,掌握以上知识是解题的关键.11.一个多边形每个内角的大小都是其相邻外角大小的2倍,则这个多边形的边数是_____________.解析:6【详解】【考点】多边形的外角和公式、多边形的一个内角与其相邻外角的关系.【分析】先根据多边形的一个内角与其相邻外角互补以及一个多边形每个内角的大小都是其相邻外角大小的2倍,求出多边形的每一个外角都等于.再根据多边形的外角和等于360°,可以求出多边形的边数是.【解答】解:∵多边形的一个内角与其相邻外角互补以及一个多边形每个内角的大小都是其相邻外角大小的2倍,∴多边形的每一个外角都等于,多边形的外角和等于360°,这个多边形的边数是故答案为:6.12.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=_____,b=_____.解析:【分析】根据因式分解的意义,把一个多项式转化成几个整式积的形式,可得答案.【详解】解:∵x2﹣ax﹣1=(x﹣2)(x+b)=x2+(b﹣2)x﹣2b,∴﹣2b=﹣1,b﹣2=﹣a,b=,a=,故答案为:,.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.13.已知关于x,y的二元一次方程组,且x,y满足x+y>3.则m的取值范围是___.解析:m>1【分析】先求出方程组的解,根据x+y>3得出不等式m+1+m>3,再求出不等式的解集即可.【详解】解:解方程组得:,∵x+y>3,∴m+1+m>3,解得:m>1,故答案为:m>1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组,解一元一次不等式等知识点,能求出关于m的不等式是解此题的关键.14.如图,要把池中的水引到处,且使所开渠道最短,可过点作于,然后沿所作的线段开渠,所开渠道即最短,试说明设计的依据是:____________________.答案:C解析:直线外一点与直线上各点连接的所有线段中,垂线段最短.【分析】直接利用点到直线的距离最短,能表示点到直线距离的线段是垂线段,即可得出结论【详解】解:∵,∴CD是垂线段,CD最短,依据为:直线外一点与直线上各点连接的所有线段中,垂线段最短.故答案为:直线外一点与直线上各点连接的所有线段中,垂线段最短.【点睛】本题考查垂线段最短,掌握垂线段最短是解题关键15.三角形的三边长为3、7、x,则x的取值范围是______答案:4<x<10【分析】根据三角形的三边关系直接进行求解即可.【详解】解:由三角形的三边长为3、7、x,则有:,即;故答案为.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关解析:4<x<10【分析】根据三角形的三边关系直接进行求解即可.【详解】解:由三角形的三边长为3、7、x,则有:,即;故答案为.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.16.如图,在△ABC中,点D、E、F分别是线段BC、AD、CE的中点,且,则=_______cm2.答案:5【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×解析:5【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×20=10,∵点F是CE的中点,∴S△BEF=S△BCE=×10=5.故答案为:5.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.17.计算:(1)(2)答案:(1)2;(2)【分析】(1)根据有理数的乘方,负指数幂,零次幂,有理数的加减进行计算即可;(2)根据同底数幂的除法,幂的乘方,整式的乘方,合并同类项进行计算即可【详解】(1)(2)解析:(1)2;(2)【分析】(1)根据有理数的乘方,负指数幂,零次幂,有理数的加减进行计算即可;(2)根据同底数幂的除法,幂的乘方,整式的乘方,合并同类项进行计算即可【详解】(1)(2)【点睛】本题考查了有理数的乘方,负指数幂,零次幂,有理数的加减,同底数幂的除法,幂的乘方,整式的乘方,合并同类项,熟练掌握以上知识点是解题的关键.18.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣16;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.答案:(1);(2);(3);(4)【分析】(1)利用提公因式法因式分解即可;(2)先提出负号,再利用完全平方公式法因式分解即可;(3)先提公因式,再利用完全平方公式法因式分解即可;(4)先运用解析:(1);(2);(3);(4)【分析】(1)利用提公因式法因式分解即可;(2)先提出负号,再利用完全平方公式法因式分解即可;(3)先提公因式,再利用完全平方公式法因式分解即可;(4)先运用平方差公式法分解为,再运用平方差公式法分解,即可求解.【详解】解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣16;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法——提公因式法、公式法、分组分解法、十字相乘法是解题的关键.19.解方程组(1)(2)答案:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2解析:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将②代入①得:,解得:,代入②中,解得:,∴方程组的解为:;(2)方程组化简得,②×3-①得:,代入②中,解得:,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解不等式组(要求:借助数轴求解集):答案:【分析】分别求出每一个不等式的解集,再在数轴上表示出每个不等式的解集,找到其公共部分即可确定不等式组的解集.【详解】解:解不等式①,得.解不等式②,得.在同一条数轴上表示不等式①②的解集解析:【分析】分别求出每一个不等式的解集,再在数轴上表示出每个不等式的解集,找到其公共部分即可确定不等式组的解集.【详解】解:解不等式①,得.解不等式②,得.在同一条数轴上表示不等式①②的解集,如下图:所以,原不等式组的解集是.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.请填空,完成下面推理过程.如图,,,平分,平分.求证:.证明:∵,(已知)∴.又∵,(已知)∴.∴.∵平分,平分(已知)∴,.∴.∵,(已知)∴.∴,∴.答案:两直线平行,同旁内角互补;同角的补角相等;角平分线的定义;两直线平行,内错角相等;等量代换;同位角相等,两直线平行【分析】根据平行线的性质与判定,角平分线的定义进行证明即可得到答案.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;角平分线的定义;两直线平行,内错角相等;等量代换;同位角相等,两直线平行【分析】根据平行线的性质与判定,角平分线的定义进行证明即可得到答案.【详解】证明:∵,(已知)∴,(两直线平行,同旁内角互补)又∵,(已知)∴.∴,(同角的补角相等)∵平分,平分(已知)∴,,(角平分线的定义)∴.∵,(已知)∴.(两直线平行,内错角相等)∴,(等量代换)∴.(同位角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.22.某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?答案:(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【分析】(1)可设购买1副乒乓球拍需x元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量解析:(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【分析】(1)可设购买1副乒乓球拍需x元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等,列出分式方程,解方程检验即可.(2)可设购买了乒乓球拍y副,根据该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副,列出不等式求解,再根据乒乓球拍的进货量不超过60副取公共部分的整数,可知共有3种.【详解】(1)设每副乒乓球拍进价为x元,由题意得:解得:,经检验是原方程的解,且符合题意,此时.答:每副乒乓球拍、羽毛球拍进价分别为80元、100元.(2)设购进乒乓球拍y副,由题意得:解得:,因为所以,所以.故共有3种进货方式:①购买58副乒乓球拍,42副羽毛球拍;②购买59副乒乓球拍,41副羽毛球拍;③购买60副乒乓球拍,40副羽毛球拍.【点睛】本题考查了分式方程的应用及一元一次不等式组的应用,解题的关键是仔细审题,找到等量关系及不等关系,列出方程与不等式组,难度一般.23.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②覆盖.特别地,若一个不等式(组)无解,则它被其他任意不等式(组)覆盖.例如:不等式被不等式覆盖;不等式组无解,被其他任意不等式(组)覆盖.(1)下列不等式(组)中,能被不等式覆盖的是______.a.b.c.d.(2)若关于的不等式被覆盖,求的取值范围.(3)若关于的不等式被覆盖,直接写出的取值范围:_____.答案:(1)c,d;(2);(3)或.【分析】(1)根据题意分别解出不等式(组),再判断a,b,c,d是否符合题意;(2)根据题意,列出关于m的不等式,即可求解;(3)分两种情况讨论,①不等式组无解析:(1)c,d;(2);(3)或.【分析】(1)根据题意分别解出不等式(组),再判断a,b,c,d是否符合题意;(2)根据题意,列出关于m的不等式,即可求解;(3)分两种情况讨论,①不等式组无解;②不等式有解,满足题目中的定义,据此列出不等式组,即可求解.【详解】(1)由,解得:,故a不符合题意;由,解得:,故b不符合题意;由,解得:,故c符合题意;由解得:,无解,故d符合题意;故选:c,d;(2)由,解得:,∵关于的不等式被覆盖,∴,即,故填:;(3)①无解,即:,解得:;②有解,即,解得:,且不等式被覆盖,即,解得:,∴;综上所述,或,故填:或.【点睛】本题考查解一元一次不等式(组),解题关键是明确题意,根据题意列出不等式(组).24.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.答案:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案为:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.25.(数学经验)三角形的中线,角平分线,高是三角形的重要线段,我们知道,三角形的3条高所在直线交于同一点.(1)①如图1,△ABC中,∠A=90°,则△ABC的三条高所在的直线交于点;②如图2,△ABC中,∠BAC>90°,已知两条高BE,AD,请你仅用一把无刻度的直尺(仅用于过任意两点作直线、连接任意两点、延长任意线段)画出△ABC的第三条高.(不写画法,保留作图痕迹).(综合应用)(2)如图3,在△ABC中,∠ABC>∠C,AD平分∠BAC,过点B作BE⊥AD于点E.①若∠ABC=80°,∠C=30°,则∠EBD=;②请写出∠EBD与∠ABC,∠C之间的数量关系,并说明理由.(拓展延伸)(3)三角形的中线将三角形分成面积相等的两部分,如果两个三角形的高相同,则他们的面积比等于对应底边的比.如图4,M是BC上一点,则有.如图5,△ABC中,M是BC上一点BM=BC,N是AC的中点,若三角形ABC的面积是m请直接写出四边形CMDN的面积.(用含m的代数式表示)答案:(1)①A;②见解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三条高的定义即可得出结论;②分别延长BE,DA,两者交于F,连接CF交BA的延长线解析:(1)①A;②见解析;(2)①25°;②2∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论