




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏南通市田家炳中学7年级数学下册第五章生活中的轴对称综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行.下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是()A. B. C. D.2、下面所给的银行标志图中是轴对称图形的是()A. B. C. D.3、下列图形中,是轴对称图形的是()A. B.C. D.4、下列图形中,不是轴对称图形的是()A. B. C. D.5、如图,北京2022年冬奥会会徽,是将蒙汉两种文字的“冬”字融为一体而成.组成会徽的四个图案中是轴对称图形的是()A. B. C. D.6、如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN.则∠NEM的度数为()A.105o B.C. D.不能确定7、下列四个图案中,不是轴对称图形的是()A. B.C. D.8、下列几种著名的数学曲线中,不是轴对称图形的是()A.笛卡尔爱心曲线 B.蝴蝶曲线C.费马螺线曲线 D.科赫曲线9、下列四个图形分别是节能、节水、绿色食品和低碳标志,其中轴对称图形是()A. B. C. D.10、下列学习用具中,不是轴对称图形的是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′的位置处,若∠1=58°,则∠EFB的度数是______.2、如图①,在长方形ABCD中,E点在AD上,并且∠AEB=60°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=10°,则∠DEC的度数为___度.3、如图,从标有数字1,2,3,4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是______.4、如图,ABC与关于直线l对称,则∠B的度数为__________.5、请你发现图中的规律,在空格_____上画出简易图案6、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(______).7、平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是______.8、如图,把一张长方形纸片沿折叠,点D与点C分别落在点和点的位置上,与的交点为G,若,则为______度.9、如图,在中,点、分别为边、上的点,连接,将沿翻折得到,使.若,,则的大小为______.10、如图,腰长为22的等腰ABC中,顶角∠A=45°,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_______.三、解答题(6小题,每小题10分,共计60分)1、如图,将ABC分别沿AB,AC翻折得到ABD和AEC,线段BD与AE交于点F,连接BE.(1)若∠ABC=20°,∠ACB=30°,求∠DAE及∠BFE的度数.(2)若BD所在的直线与CE所在的直线互相垂直,求∠CAB的度数.2、综合与应用:根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数:点A表示__________,点B表示_______.(2)观察数轴,与点A的距离为4的点表示的数是_________和___________.(3)若将数轴折叠,使得点A与表示的点重合,则点B与数_________表示的点重合.(4)若数轴上M,N两点之间的距离为2020(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,则M、N两点表示的数分别是什么?3、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°.4、如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中画出格点△A'B'C'与△ABC成轴对称,且点A,B,C的对称点分别为点A',B',C'.例如,图1、图2中的格点△A'B'C'与△ABC成轴对称,请你在图3、图4、图5、图6中各画出一种格点△A'B'C',使各图中的△A'B'C'与△ABC对称形式不同.5、如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请作出△ABC关于直线l对称的△A1B1C1;(2)求△A1B1C1的面积.6、如图所示的方格纸中,每个小方格的边长都是1,点A(﹣4,1)、B(﹣3,3)、C(﹣1,2).(1)作△ABC关于y轴对称的△A'B'C';(2)在x轴上找出点P,使PA+PC最小,在图中描出满足条件的P点(保留作图痕迹),并直接写出P点的坐标.-参考答案-一、单选题1、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键.2、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可.【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.4、A【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一判断即可得到答案.【详解】解:选项A中的图形不是轴对称图形,故A符合题意;选项B中的图形是轴对称图形,故B不符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选A【点睛】本题考查的是轴对称图形的识别,掌握“轴对称图形的定义”是解本题的关键.5、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A不是轴对称图形,故本选项不合题意B不是轴对称图形,故本选项不合题意C不是轴对称图形,故本选项不合题意D是轴对称图形,故本选项符合题意故选D【点睛】本题考察了轴对称图形的概念,熟练掌握应用轴对称图形的定义解决问题是关键点.6、B【分析】由折叠的性质可得:再结合邻补角的含义可得答案.【详解】解:由折叠的性质可得:故选B【点睛】本题考查的是轴对称的性质,角平分线的含义,邻补角的含义,利用轴对称的性质证明是解本题的关键.7、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:A、是轴对称图形,不合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:B.【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.8、C【分析】根据轴对称图形的概念(平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)求解.【详解】解:A、是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念,深刻理解轴对称图形的概念是解题关键9、C【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称进行分析判断即可.【详解】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.10、B【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一分析即可.【详解】解:选项A中的图形是轴对称图形,故A不符合题意;选项B中的图形不是轴对称图形,故B符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,掌握轴对称图形的定义是解题的关键.二、填空题1、61°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=58°,∴∠DED′=180°-∠1=122°,∴∠DEF=61°,又∵AD∥BC,∴∠EFB=∠DEF=61°.故答案为:61°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.2、35【分析】由折叠可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,进而可得答案.【详解】解:由折叠可得BE平分,CE平分,∵∠AEB=60°,∴=2∠AEB=120°,∵,∴∴∠CED=.故答案为:35.【点睛】本题考查角的和差关系,轴对称的性质,根据折叠的性质得到BE平分,CE平分是解本题关键.3、2【分析】根据轴对称图形的定义求解即可.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:由轴对称图形的定义可得,应该拿走的小正方形的标号是2.故答案为:2.【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.4、100°【分析】根据轴对称的性质可得≌,再根据和的度数即可求出的度数.【详解】解:∵与关于直线l对称∴≌∴,∴故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键.5、【分析】由图知,该图案是1,2,3,4,5的轴对称构成的图象,据此可得答案.【详解】解:为1的轴对称构成的图象,为2的轴对称构成的图象,为4的轴对称构成的图象,为5的轴对称构成的图象,故横线上为3的轴对称构成的图象.故答案为.【点睛】本题考查了图形的变化规律.解题的关键是根据题意得到图案是1,2,3,4,5的轴对称构成的图象.6、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式7、【分析】根据关于x轴的对称点的坐标特征求解即可;【详解】解:根据关于x轴的对称点的特征,横坐标不变,纵坐标变为相反数可得:点关于轴对称的点的坐标是;故答案是.【点睛】本题主要考查了平面直角坐标系中点的对称性,掌握关于x轴对称的点的特征,准确计算是解题的关键.8、【分析】由折叠的性质可以得,从而求出,再由平行线的性质得到.【详解】解:由折叠的性质可知,,∵∠EFG=55°,∴,∴,∵四边形ABCD是长方形∴AD∥BC,DE∥,∴,故答案为:70.【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.9、30【分析】由得出,由折叠性质可知,,再根据三角形外角性质求出.【详解】解:如图,设交于点,∵,,由折叠性质可知,,.故答案为:【点睛】本题主要考查了平行线的性质,三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.10、或2【分析】分两种情况:当CE⊥AB时,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,证明△BCM≌△DCM,得到BM=DM,证明△MDE是等腰直角三角形,即可得解;当CE⊥AC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CE⊥AB时,如图,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,∵等腰△ABC中,顶角∠A=45°,∴∠B=∠ACB=67.5°,∴∠BCM=22.5°,∴∠BCM=∠DCM,在△BCM和△DCM中,,∴△BCM≌△DCM(ASA),∴BM=DM,由折叠得:∠E=∠A=45°,AD=DE,∴△MDE是等腰直角三角形,∴DM=EM,设DM=x,则BM=x,DEx,∴ADx.∵AB=22,∴2xx=22,解得:x,∴BD=2x=2;当CE⊥AC时,如图,∴∠ACE=90°,由折叠得:∠ACD=∠DCE=45°,∵等腰△ABC中,顶角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即点D、E都在直线AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,∵AB=AC==22,∴ADAC=2,BD=AB﹣AD=(22)﹣(2),综上,BD的长为或2.故答案为:或2.【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运用是解题的关键.三、解答题1、(1),;(2)【分析】(1)已知,,可由三角形的内角和求出的度数,已知ABC分别沿AB,AC翻折得到ABD和AEC,故,可得,进而得出,根据从而可求出;(2)当时,,已知ABC分别沿AB,AC翻折得到ABD和AEC,所以可得,,所以,最后由三角形内角和求出即可.【详解】解:(1)∵,,∴,∵,∴,∴,∵,∴;(2)∵BD所在直线与CE所在直线互相垂直,∴,由翻折的性质可得,,∴,∴.【点睛】本题主要考查折叠的性质与全等三角形的判定与性质,解题的关键是通过折叠找到全等的三角形,利用全等三角形的性质:对应角相等找到各个角之间的关系.2、(1)1,-2.5;(2)-3,5;(3)0.5;(4)M表示的数为-1011;N表示的数为1009【分析】(1)根据数轴的性质读数,即可得到答案;(2)根据数轴和绝对值的性质计算,即可得到答案;(3)根据数轴的性质计算,即可得到答案;(4)根据数轴和绝对值的性质,结合题意,通过列方程并求解,即可得到答案.【详解】解:(1)根据数轴性质,读数得:A:1;B:-2.5,故答案是:1,-2.5;(2)假设与点A的距离为4的数为:x∵∴或∴或即与点A的距离为4的点表示的数是:5或-3,故答案是:5或-3,(3)∵A点与-3表示的点重合,且A点与-3距离为4∴A点与-3之间的中心点为:-1∴数轴以-1为中心折叠∵折叠后重合的点到点-1的距离相等又∵B点到-1点的距离为:设和B点重合的点为:x∴∴或(即B点舍去)∴B点与0.5表示的点重合,故答案是:0.5;(4)假设M点表示的数为:x,N点表示的数为:y∵数轴上M、N两点之间的距离为2020(M在N的左侧),且M、N两点经过(3)中折叠后互相重合∴M、N两点到点-1距离为1010假设距离点-1的距离为1010的点为:x∴∴或∴或∵M在N的左侧∴M:-1011;N:1009,故答案是:-1011,1009.【点睛】本题考查了绝对值、数轴、一元一次方程的知识;解题的关键是熟练掌握绝对值、数轴、一元一次方程的性质,从而完成求解.3、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,根据直角三角形的性质求出∠A,根据三角形的外角性质得到∠A′DB=∠B,根据等腰三角形的判定定理得到A′D=A′B,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D′处,连接CD′,根据全等三角形的性质得到CD=CD′=BC,∠D=∠AD′C,进而证明结论;【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年传统中医养生理论初级学习指南与模拟题集
- 高速公路施工扬尘污染防治及垃圾处置措施
- 2025年中国华能巴基斯坦公司招聘面试指南与预测题解析
- 2025年县域寄递事业部客户经理招聘考试模拟题
- 六年级班主任班级学习氛围提升计划
- 2025年人工智能行业法务招聘面试预测题及解析
- 2025年客服主管招聘面试技巧及问题解析大全
- 2025年市场营销师中级考试模拟题及解析
- 2025年初级客户经理面试指南与模拟题详解
- 环保设施重大危险源清单及控制措施
- 2023-2024学年江苏省盐城市盐都区八年级(下)期末物理试卷(含答案)
- 外研版英语四年级下册阅读理解练习(含答案)
- DZT 0447-2023 岩溶塌陷调查规范(1:50000)
- 电子版简易防水合同范本
- 医院传染病防控管理SOP
- 内分泌科制度
- 甲状腺健康科普宣传课件
- 消防验收监理评估报告
- 消防维保施工组织方案
- 小额贷款信贷风险管理制度样本
- 《饮食文化》课程标准
评论
0/150
提交评论