




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学苏教版七年级下册期末模拟真题(比较难)及答案解析一、选择题1.下列计算正确的是()A.a2•a3=a6 B.(2a)3=6a3C.(a+b)2=a2+b2 D.(﹣a2)3=﹣a6答案:D解析:D【分析】A:应用同底数幂乘法法则进行计算即可得出答案;B:应用积的乘方法则进行计算即可得出答案;C:应用完全平方公式进行计算即可得出答案;D:应用多项式加法法则进行计算即可得出答案.【详解】解:A:因为a2•a3=a2+3=a5,所以A选项不符合题意;B:因为(2a)3=8a3,所以B选项不符合题意;C:因为(a+b)2=a2+2ab+b2,所以C选项不符合题意;D:(-a2)3=-a6,所以D选项正确.故选:D.【点睛】本题主要考查了完全平方公式,多项式加法、同底数幂的乘法、积的乘方,熟练应用完全平方公式,多项式加法、同底数幂的乘法、积的乘方法则进行计算是解决本题的关键.2.如图,直线截、分别交于、两点,则的同位角是()A. B. C. D.答案:B解析:B【分析】根据同位角的定义:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,∠1的同位角为∠3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.3.已知方程组,则x﹣y值是()A.5 B.﹣1 C.0 D.1答案:D解析:D【分析】两方程相减即可求出结果.【详解】解:①﹣②得:,故选:D.【点睛】此题考查二元一次方程组,注意灵活运用,不一定非要解方程组.4.若,则下列不等式中不成立的是()A. B. C. D.答案:B解析:B【详解】分析:根据不等式的性质,逐一判断即可.详解:根据不等式的性质1,不等式的两边同时减去-3,不等号的方向不变,故正确;根据不等式的性质3,不等式的两边同乘以-3,不等号的方向改变,故不正确;根据不等式的性质2,不等式的两边同时除以3,不等号的方向不变,故正确;根据不等式的性质3,不等式的两边同乘以-1,不等号的方向改变,故正确.故选B.点睛:此题主要考查了不等式的性质,关键是熟记不等式的三条性质.不等式的性质1,不等式的两边同时加上或减去同一个数(式子),不等号的方向不变;不等式的性质2,不等式的两边同乘以或除以同一个正数,不等号的方向不变;不等式的性质3,不等式的两边同乘以或除以同一个负数,不等号的方向改变.5.若关于x的不等式的正整数解是1,2,3,则整数m的最大值是()A.10 B.11 C.12 D.13答案:D解析:D【分析】先解不等式得到x<,再根据正整数解是1,2,3得到3<≤4时,然后从不等式的解集中找出适合条件的最大整数即可.【详解】解不等式得x<,关于x的不等式的正整数解是1,2,3,3<≤4,解得10
<
m≤
13,整数m的最大值为13.故选:D.【点睛】本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.6.在下面的几个命题中,①两点确定一条直线是定义;②同旁内角互补;③若正多形的边数越多,则它每个内角的度数越大;④过边形的一个顶点,可以引条对角线;⑤若两个数相除结果为正,则这两个数的符号相同;其中说法正确的是()A.①③ B.②⑤ C.③⑤ D.①②④答案:C解析:C【详解】解析:本题考查了真假命题的判定.①假命题;②假命题,可改为“两直线平行,同旁内角互补”;③真命题;④假命题,可以引条对角线;⑤真命题.故选C.7.有依次排列的三个数:6,2,8,先将任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新的数串:6,-4,2,6,8,这称为第一次操作,第二次操作后同样可以产生一个新数串:6,-10,-4,6,2,4,6,2,8,继续操作下去,问:第2021次操作后所产生的新数串的所有数之和是()A.4054 B.4056 C.4058 D.4060答案:C解析:C【分析】首先根据题意,分别求出前三次操作得到的数分别是多少,再求出它们的和各是多少;然后总结出第n次操作:求和结果是16+2n,再把n=2021代入,求出算式的值是多少即可.【详解】解:第一次操作:6,-4,2,6,8,求和结果:18,第二次操作:6,-10,-4,6,2,4,6,2,8,求和结果:20,第三次操作:6,-16,-10,6,-4,10,6,-4,2,2,4,2,6,-4,2,6,8,求和结果:22,……第n次操作:求和结果:16+2n,∴第2021次结果为:16+2×2021=4058.故选:C.【点睛】此题主要考查了有理数加减法的运算方法,以及数字的变化规律,要熟练掌握.8.如图,将一张三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列说法错误的是()A. B.C. D.答案:A解析:A【分析】由翻折变换的性质,三角形内角和定理逐项进行判断即可.【详解】解:由翻折变换可得,CD=ED,BC=BE,∠C=∠BED,∠CBD=∠EBD,∠BDC=∠BDE,∵AD+CD=AC,∴AD+DE=AC≠BD,因此选项A说法错误,符合题意;∵AE+BE=AB,∴AE+BC=AB,因此选项B说法正确,不符合题意;∵∠A+∠ADE=∠BED,∴∠A+∠ADE=∠C,因此选项C说法正确,不符合题意;∵∠BDC=∠A+∠ABD,∠BDC=∠BDE,∠CBD=∠ABD,∴∠A+∠CBD=∠BDE,因此选项D说法正确,不符合题意;故选:A.【点睛】本题考查翻折变换、三角形内角和定理,掌握翻折变换的性质、三角形内角和定理以及等量代换是正确判断的前提.二、填空题9.计算:=____________.解析:【解析】【分析】根据单项式与单项式的乘法法则计算即可.【详解】=.故答案为.【点睛】本题考查了单项式的乘法,单项式与单项式的乘法法则是,把它们的系数相乘,字母部分的同底数的幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.10.命题“内错角相等”是________命题(填“真”、“假”).解析:假【分析】根据“两直线平行,内错角相等”即可判断此命题的真假.【详解】∵两直线平行,内错角相等,∴若两直线不平行,内错角不相等,∴此命题为假命题,故答案为:假.【点睛】本题考查了命题与定理,掌握判断命题真假的方法,熟知平行线的性质是解答本题的关键.11.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.解析:12【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=12.故答案为12.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.12.已知,则____________.解析:2012【分析】把看作一个整体,进一步将原式分解代入求得答案即可.【详解】解:∵∴原式=2020-2×4=2012.故答案为2012.【点睛】此题考查因式分解的实际运用,整体代入是解决问题的关键.13.若关于x,y的方程组中x的值比y的相反数大2,则k=_____.解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y+2,∴4(﹣y+2)+5y=10,解得:y=2,把y=2代入4x+5y=10中,得:4x+10=10,解得:x=0,则方程组的解是,∴﹣(k﹣1)×2=8,解得:k=﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解.14.如图,要把池中的水引到处,且使所开渠道最短,可过点作于,然后沿所作的线段开渠,所开渠道即最短,试说明设计的依据是:____________________.答案:C解析:直线外一点与直线上各点连接的所有线段中,垂线段最短.【分析】直接利用点到直线的距离最短,能表示点到直线距离的线段是垂线段,即可得出结论【详解】解:∵,∴CD是垂线段,CD最短,依据为:直线外一点与直线上各点连接的所有线段中,垂线段最短.故答案为:直线外一点与直线上各点连接的所有线段中,垂线段最短.【点睛】本题考查垂线段最短,掌握垂线段最短是解题关键15.若一个正边形的每个内角为,则这个正边形的边数是__________.答案:15【详解】解:所以这个正n边形的边数是360÷24=15故答案为:15.解析:15【详解】解:所以这个正n边形的边数是360÷24=15故答案为:15.16.如图,D、E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,若S△ABC=60,则四边形BDFE的面积为_______.答案:【分析】连接根据等高三角形面积比等于底边长之比,设,用不同的代数式表示,建立一元一次方程求解即可.【详解】连接,如图:,S△ABC=60,,,设解得四边形解析:【分析】连接根据等高三角形面积比等于底边长之比,设,用不同的代数式表示,建立一元一次方程求解即可.【详解】连接,如图:,S△ABC=60,,,设解得四边形故答案为:【点睛】本题考查了三角形中线的性质,一元一次方程的应用,等高三角形面积比等于底边长之比,设未知数解方程是解题的关键.17.计算:(1).(2).(3).答案:(1)2;(2);(3)【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可;(3)先计算多项式乘以多项式,单项解析:(1)2;(2);(3)【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可;(3)先计算多项式乘以多项式,单项式乘以多项式,然后合并同类项即可.【详解】解:(1);(2);(3).【点睛】本题主要考查了负整数指数幂,零指数幂,绝对值,整式的混合运算,同底数幂的乘法,幂的乘方和合并同类项,解题的关键在于能够熟练掌握相关知识进行求解.18.分解因式:(1)(2)答案:(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式解析:(1);(2)【分析】(1)先提公因式法,再用公式法分解因式即可;(2)直接用公式法分解因式即可【详解】(1)(2)【点睛】本题考查了提公因式法分解因式,公式法分解因式,熟练公式是解题的关键.19.解方程组:(1);(2).答案:(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解析:(1);(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1),①-②得:2y=4,解得:y=2,把y=2代入①得:x-2=3,解得:x=5,则方程组的解为;(2),①×2+②×3得:13x=65,解得:x=5,把x=5代入①得:10+3y=16,解得:y=2,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解不等式组,并写出它的整数解.答案:,整数解为4,5【分析】先求出每个不等式的解集,然后求出不等式组的解集,再找出整数解即可.【详解】解:解不等式①,得解不等式②,得∴原不等式组的解集为原不等式组的整数解为解析:,整数解为4,5【分析】先求出每个不等式的解集,然后求出不等式组的解集,再找出整数解即可.【详解】解:解不等式①,得解不等式②,得∴原不等式组的解集为原不等式组的整数解为:4,5.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.三、解答题21.已知:如图,CD⊥AB,FG⊥AB,垂足分别为D、G,点E在AC上,且∠1=∠2.(1)那么DE与BC平行吗?为什么?(2)如果∠B=40°,且∠A比∠ACB小10°,求∠DEC的度数.答案:(1)DE∥BC,理由见解析;(2)∠DEC=105°.【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,解析:(1)DE∥BC,理由见解析;(2)∠DEC=105°.【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证DE与BC平行;(2)根据三角形内角和求出∠ACB=75°,再根据平行线的性质即可求解.【详解】(1)DE∥BC,理由如下:∵CD⊥AB,FG⊥AB,∴CD∥FG.∴∠2=∠BCD,又∵∠1=∠2,∴∠1=∠BCD,∴DE∥BC;(2)∵∠B=40°,∠ACB﹣10°=∠A,∴∠ACB+(∠ACB﹣10°)+40°=180°,∴∠ACB=75°,由(1)知,DE∥BC,∴∠DEC+∠ACB=180°,∴∠DEC=105°.【点睛】此题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“两直线平行,同旁内角互补”是解题的关键.22.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。请解答下列问题:(1)求每副乒乓球拍和每个乒乓球的单价为多少元.(2)若每班配4副乒乓球拍和40个乒乓球,则甲商店的费用为元,乙商店的费用为元.(3)每班配4副乒乓球拍和m(m>100)个乒乓球则甲商店的费用为元,乙商店的费用为元.(4)若该校只在一家商店购买,你认为在哪家超市购买更划算?答案:(1)每副乒乓球拍单价为50元,每个乒乓球的单价为1元;(2)4000元,4320元;(3)3200+20m,3600+18m;(4)若甲商店花钱少,则3200+20m<3600+18m;解析:(1)每副乒乓球拍单价为50元,每个乒乓球的单价为1元;(2)4000元,4320元;(3)3200+20m,3600+18m;(4)若甲商店花钱少,则3200+20m<3600+18m;解得m<200;若乙商店花费少,则3200+20m>3600+18m,解得m>200;若甲商店和乙商店一样多时,则3200+20m=3600+18m,解得m=200;综上所述100<m<200时甲商店优惠m>200时乙商店优惠m=200时两家商店一样【分析】(1)设每副乒乓球拍单价为x元,每个乒乓球的单价为y元.根据题意列出二元一次方程组,解答即可;(2)利用(1)中求得的价格即可解答;(3)分别用含m的代数式表示在甲、乙两家商店购买所花的费用即可;(4)利用(3)求得的代数式,进行分类讨论即可.【详解】解:(1)设每副乒乓球拍单价为x元,每个乒乓球的单价为y元.由题意可知解得答:每副乒乓球拍单价为50元,每个乒乓球的单价为1元.(2)甲商店:(元);乙商店:(元)故答案为:4000元;4320元;(3)在甲商店购买的费用为:在乙商店购买的费用为:(4)若甲商店花钱少,则3200+20m<3600+18m解得m<200若乙商店花费少,则3200+20m>3600+18m,解得m>200,若甲商店和乙商店一样多时,则3200+20m=3600+18m,解得m=200综上所述100<m<200时甲商店优惠m>200时乙商店优惠m=200时两家商店一样.【点睛】本题考查了二元一次方程组的应用以及方案的选择,审清题意,列出方程组是解题关键.23.某市七年级“新体考”新增了“三大球”选考项目,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,某学校计划到某商场采购一批足球和排球,该商场的每个足球与每个排球的标价之和为90元;若按标价购买4个足球、5个排球,则共需400元.(1)该商场足球和排球的标价分别是多少元?(2)若该商场有两种优惠方式:方式一:足球和排球一律按标价8折优惠;方式二:每购买2个足球,赠送1个排球(单买排球按标价计算).①若学校需采购足球、排球各50个,你认为应该采用哪种优惠方式购买合算?②若学校计划在此商场采购足球、排球共100个,其中足球数量为偶数且不超过48个,并且用方式二购买的费用不超过用方式一购买的费用,请问学校有几种采购方案,并说明理由.答案:(1)该商场足球的标价为50元个,排球的标价为40元个;(2)①采用优惠方式二购买合算;②学校有2种采购方案.【分析】(1)设该商场足球的标价为元个,排球的标价为元个,根据“该商场的每个足球与每解析:(1)该商场足球的标价为50元个,排球的标价为40元个;(2)①采用优惠方式二购买合算;②学校有2种采购方案.【分析】(1)设该商场足球的标价为元个,排球的标价为元个,根据“该商场的每个足球与每个排球的标价之和为90元;若按标价购买4个足球、5个排球,则共需400元”,即可得出关于,的二元一次方程组,解之即可得出该商场足球和排球的标价;(2)①利用总价单价数量,结合两种优惠方式的优惠策略,即可分别求出采用两次优惠方式所需费用,比较后即可得出采用优惠方式二购买合算;②设购买足球个,则购买排球个,根据“购买足球的数量不超过48个,并且用方式二购买的费用不超过用方式一购买的费用”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为正整数且为偶数,即可得出采购方案的个数.【详解】解:(1)设该商场足球的标价为元个,排球的标价为元个,依题意得:,解得:.答:该商场足球的标价为50元个,排球的标价为40元个.(2)①采用优惠方式一的费用为(元;采用优惠方式二的费用为(元.答:采用优惠方式二购买合算.②设购买足球个,则购买排球个,依题意得:,解得:.又为正整数,且为偶数,可以取46,48,学校有2种采购方案.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①利用总价单价数量,分别求出采用两种优惠方式所需费用;②根据各数量之间的关系,正确列出一元一次不等式组.24.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.答案:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.【详解】(1)由翻折的性质可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故与∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故与∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°则,,由翻折可知:∵,,∴,,当∠FDE=∠DFE时,,解得:;当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.25.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E=°;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.答案:(1)45;(2)67.5°;(3)m=2,n=﹣3.【分析】(1)根据角平分线的定义可得∠CAF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保健食品计划试题及答案
- 2025年验船师考试(C级船舶检验专业实务)测试题及答案一
- 2025年注册验船师资格考试(C级船舶检验法律法规)经典试题及答案二
- 2025年环境科学与可持续发展考试试题及答案
- 北京市门头沟区2024-2025学年八年级上学期期末考试英语试题及答案
- 北京市门头沟区2023-2024学年九年级上学期期末质量监测语文试题及答案
- 2025年英语四六级考试作文范文与技巧解析
- 校长建议课件
- 2025年殡仪馆服务流程优化与管理模拟题及解析
- 2025年招聘考试宝典从模拟题看项目经理的必-备知识
- 纯英文初三数学试卷
- 《GMP自检简介》课件
- 2025年中铁建公路运营有限公司招聘笔试参考题库含答案解析
- 压缩空气流量及管径计算
- 起重吊装作业安全培训题库
- 2025年月度工作日历含农历节假日电子表格版
- 人教版三年级下册数学口算题题卡1000道带答案可打印
- 乐嘉性格色彩培训
- 急性呼吸衰竭急诊服务流程
- 财险公司新人培训
- 中医护理基础饮食护理
评论
0/150
提交评论