版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京第七十八中学中考数学几何综合压轴题易错专题一、中考数学几何综合压轴题1.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在中,,.,试判断是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,是“等高底”三角形,是“等底”,作关于所在直线的对称图形得到,连结交直线于点.若点是的重心,求的值.(3)应用拓展:如图3,已知,与之间的距离为2.“等高底”的“等底”在直线上,点在直线上,有一边的长是的倍.将绕点按顺时针方向旋转得到,所在直线交于点.求的值.解析:(1)证明见解析;(2)(3)的值为,,2【解析】分析:(1)过点A作AD⊥直线CB于点D,可以得到AD=BC=3,即可得到结论;(2)根据ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC与ΔABC关于直线BC对称,得到∠ADC=90°,由重心的性质,得到BC=2BD.设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到结论;(3)分两种情况讨论即可:①当AB=BC时,再分两种情况讨论;②当AC=BC时,再分两种情况讨论即可.详解:(1)是.理由如下:如图1,过点A作AD⊥直线CB于点D,∴ΔADC为直角三角形,∠ADC=90°.∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即ΔABC是“等高底”三角形.(2)如图2,∵ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ΔA′BC与ΔABC关于直线BC对称,∴∠ADC=90°.∵点B是ΔAA′C的重心,∴BC=2BD.设BD=x,则AD=BC=2x,∴CD=3x,∴由勾股定理得AC=x,∴.(3)①当AB=BC时,Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.∵“等高底”ΔABC的“等底”为BC,l1//l2,l1与l2之间的距离为2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=.∵ΔABC绕点C按顺时针方向旋转45°得到ΔA'B'C,∴∠CDF=45°.设DF=CF=x.∵l1//l2,∴∠ACE=∠DAF,∴,即AF=2x.∴AC=3x=,可得x=,∴CD=x=.Ⅱ.如图4,此时ΔABC是等腰直角三角形,∵ΔABC绕点C按顺时针方向旋转45°得到ΔA'B'C,∴ΔACD是等腰直角三角形,∴CD=AC=.②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形.∵ΔABC绕点C按顺时针方向旋转45°得到ΔA′B′C,∴A′C⊥l1,∴CD=AB=BC=2.Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′B′C时,点A′在直线l1上,∴A′C∥l2,即直线A′C与l2无交点.综上所述:CD的值为,,2.点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.2.(基础巩固)(1)如图1,在中,M是的中点,过B作,交的延长线于点D.求证:;(尝试应用)(2)在(1)的情况下载线段上取点E(如图2),已知,,,求;(拓展提高)(3)如图3,菱形中,点P在对角线上,且,点E为线段上一点,.若,,求菱形的边长.解析:(1)证明见解析;(2);(3).【分析】(1)证明,即可求解;(2)过点B作于点H,得到,进而求解;(3)延长交于G,交延长线于F,连结,可得,所以,设菱形边长为,进而可得出结论.【详解】解:(1)证明:,,,是的中点,,,.(2)由(1)得,,作,垂足为H,如图所示:,在中,,.(3)延长交于G,交延长线于F,连结,如图所示:过作于由,,设菱形边长为,在和中,即,解得(舍负),菱形的边长为.【点睛】本题考查四边形综合题,主要考查了菱形的性质、相似三角形的判定与性质,解直角三角形、勾股定理的运用,正确作出辅助线是解题的关键.3.如图,在菱形中,,将边绕点逆时针旋转至,记旋转角为.过点作于点,过点作直线于点,连接.(探索发现)填空:当时,=.的值是(验证猜想)当时,中的结论是否仍然成立?若成立,请仅就图的情形进行证明;若不成立,请说明理由;(拓展应用)在的条件下,若,当是等腰直角三角形时,请直接写出线段的长.解析:(1),;(2)当时,(1)中的结论仍然成立,理由见解析;(3)线段的长为或.【分析】当时,点B′与点C重合,,由四边形ABCD为菱形,可求∠ABE=90°,由,可求∠ABC=60°,=30°,由DF⊥BC,DC∥AB,∠FDC=∠EBC=30°,由sin∠FDC=sin∠EBC=,可得CF=CE,可求∠CEF=∠FDC=30°即可;当时,中的结论仍然成立.先求,再证.最后证即可;连接,交于点.先求,..分两种情况:如图先求,再证△B′BD∽△EBF,可得,如图先求.再证△B′BD∽△EBF,.【详解】当时,点B′与点C重合,∵,四边形ABCD为菱形,CD∥AB,∴⊥AB,∴∠ABE=90°,∵,AD∥BC,∴∠ABC=180°-∠BAD=180°-120°=60°,∴=∠ABE-∠ABC=90°-60°=30°,∵DF⊥BC,DC∥AB,∴DF⊥AD,∠CDA=180°-∠BAD=60°,∴∠FDC=90°-∠CDA=30°,∠FCD=90°-∠FDC=60°,∴∠FDC=∠EBC=30°,∴sin∠FDC=sin∠EBC=,∵DC=BC,∴CF=CE,∴∠CFE=∠CEF=∠FCD=30°,∴∠CEF=∠FDC=30°,∴DF=FE,∵cos∠FDC=,∴=,故答案为,.当时,中的结论仍然成立.证明:如图,连接.,,.,...,即.,,..,线段的长为或.连接,交于点.,,,,∵DE=BE,∠DEB=90°,∴∠EDB=∠EBD=45°,.,∠B′EB=90°,,.,..分两种情况:如图,,∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE+∠EBD=∠EBD+∠DBF,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.如图,.∵∠B′BE=∠DBF=30°,∴cos∠B′BE=cos∠DBF=,又∵∠B′BE-∠FBB′=∠DBF-∠FBB′,∴∠B′BD=∠EBF,∴△B′BD∽△EBF,∴,.综上所述,线段的长为或.【点睛】本题考查图形旋转变换,菱形性质,锐角三角函数值,等腰直角三角形性质,三角形相似判定与性质,掌握图形旋转变换,菱形性质,锐角三角函数值,等腰直角三角形性质,三角形相似判定与性质是解题关键.4.定义:有一组对角互补的四边形叫做“对补四边形”,例如,四边形中,若或,则四边形是“对补四边形”.(概念理解)(1)如图1,四边形是“对补四边形”.①若,则________;②若.且时.则_______;(拓展提升)(2)如图,四边形是“对补四边形”,当,且时,图中之间的数量关系是,并证明这种关系;(类比应用)(3)如图3,在四边形中,平分;①求证:四边形是“对补四边形”;②如图4,连接,当,且时,求的值.解析:(1)①,②;(2),理由见解析;(3)①见解析,②.【分析】(1)①根据“对补四边形”的定义,结合,即可求得答案;②根据“对补四边形”的定义,由,得,再利用勾股定理即可求得答案;(2)延长至点,使得,连接,根据“对补四边形”的定义,可证明,继而证明,从而可得结论;(3)①过点作于点,于点,则,可证,进而可证四边形是“对补四边形”;②设,则根据,再运用建立方程,解方程即可求得.【详解】(1),设,根据“对补四边形”的定义,,即,解得,,,.故答案为:.②如图1,连接,,,,在中,在中,,,,故答案为:.(2),理由如下:如图2,延长至点,使得,连接,四边形是“对补四边形”,,,,,,,,即,,,,,,,,即,故答案为:.(3)①证明:如图3,过点作于点,于点,则,平分,,,,,,,与互补,四边形是“对补四边形”;②由①可知四边形是“对补四边形”,,,,设,则,,,,,,,整理得:,解得:.在中,,.【点睛】本题考查了勾股定理,四边形内角和定理,全等三角形的性质与判定,解一元二次方程,三角函数的定义等知识,熟练掌握勾股定理和全等三角形的判定和性质,准确理解新定义是解题的关键.5.如图,分别为中上的动点(点除外),连接交于点P,.我们约定:线段所对的,称为线段的张角.情景发现(1)已知三角形是等边三角形,,①求线段的张角的度数;②求点P到的最大距离;③若点P的运动路线的长度称为点P的路径长,求点P的路径长.拓展探究(2)在(1)中,已知是圆P的外切三角形,若点的运动路线的长度称为点的路径长,试探究点的路径长与点P的路径长之间有何关系?请通过计算说明.解析:(1)①120°,②点P到的最大距离,③;(2)点的路径长与点P的路径长的比值是2:1(或点的路径长是点P的路径长的2倍).【分析】(1)①利用等边三角形的性质证△AEB与△BCF全等,得到∠EBA=∠BCF,利用三角形的内角和定理即可求出∠CPB的度数;②由题意可知当PO⊥BC于点N时,点P到BC的距离最大,根据垂径定理及三角函数即可求出点P到BC的最大距离;③由题意知点P的路径长为弧BC的长,在②的基础上直接利用公式即可求出结果;(2)由题意可知张角∠CPB的度数始终为120°,可得∠CBP+∠BCP=60°,因为圆P是△A'BC的内切圆,由此可推出A'是等边三角形ABC外接圆上优弧BAC上的一动点,其半径为2,圆心角240°,根据弧长公式可直接求出其长度,并计算出点A'的路径长是点P的路径长的2倍.【详解】解:(1)①∵是等边三角形,∴,∵,∴,∴.∵,∴,.②(2)如图所示,由于始终为,故过点作圆O,∴.当于点N时,点P到的距离最大.∵,∴,∴,∴点P到的最大距离.③由②可知点P的路径为的长度,即(2)点的路径长与点P的路径长的比值是(或点的路径长是点P的路径长的2倍),理由:由(1)中题意可知张角的度数始终为,可得,又因为圆P是的内切圆,所以,所以,所以是等边三角形外接圆上优弧上的一动点,由题意可得等边三角形外接圆的半径为,点的路径是优弧的长度,即以的圆心角,半径为的弧长,如图,所以点的路径长=,点的路径长与点P的路径长的比值是:,所以点的路径长与点P的路径长的比值是2:1(或点的路径长是点P的路径长的2倍).【点睛】本题考查了等边三角形的性质,圆的有关性质,弧长公式等,解题的关键是能够根据题意画出图形.6.综合与实践(1)(探索发现)在中.,,点为直线上一动点(点不与点,重合),过点作交直线于点,将绕点顺时针旋转得到,连接.如图(1),当点在线段上,且时,试猜想:①与之间的数量关系:______;②______.(2)(拓展探究)如图(2),当点在线段上,且时,判断与之间的数量关系及的度数,请说明理由.(3)(解决问题)如图(3),在中,,,,点在射线上,将绕点顺时针旋转得到,连接.当时,直接写出的长.解析:(1)①;②;(2),.理由见解析;(3)的长为1或2.【分析】(1)由“SAS”△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.由“SAS”△ADF≌△EDB,即可解决问题;(3)分当点D在线段BC上和当点D在BC的延长线上两种情形讨论,利用平行线分线段成比例可求解.【详解】解:(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,且DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BE,90°.(2),.理由:∵,∴,.∵,∴.∴.∴∵,,,∴.又∵,∴.∴,.∴,,∴.(3)1或2.解:当点在线段上时,过点作交直线于点,如图(1).∵,∴.∵,∴.∵,∴,.∵,,∴.∵,∴.∴.∴.又,∴,.当点在线段的延长线上时,过点作交的延长线于点,如图(2).∵,∴.∴.∴.同理可得.综上可得,的长为1或2.【点睛】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.7.观察猜想:(1)如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D与点C重合,点E在斜边AB上,连接DE,且DE=AE,将线段DE绕点D顺时针旋转90°得到线段DF,连接EF,则=______,sin∠ADE=________,探究证明:(2)在(1)中,如果将点D沿CA方向移动,使CD=AC,其余条件不变,如图2,上述结论是否保持不变?若改变,请求出具体数值:若不变,请说明理由.拓展延伸(3)如图3,在△ABC中,∠ACB=90°,∠CAB=a,点D在边AC的延长线上,E是AB上任意一点,连接DE.ED=nAE,将线段DE绕着点D顺时针旋转90°至点F,连接EF.求和sin∠ADE的值分别是多少?(请用含有n,a的式子表示)解析:(1);;(2)不变;(3)=;sin∠ADE=.【分析】(1)由等腰三角形的性质和等边三角形的判定得到∠A=∠ACE=30°,△BEC是等边三角形,据此求得CE的长度,根据等腰直角三角形的性质来求EF的长度,易得答案;(2)不变.理由:如图2,过点D作DG∥BC交AB于点G,构造直角三角形:△ADG,结合含30度角的直角三角形的性质和锐角三角函数的定义,结合方程求得答案;(3)如图3,过点E作EG⊥AD于点G,构造直角三角形,根据锐角三角函数的定义列出方程并解答.【详解】(1)如图1,∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠B=60°.又CE=AE,∴∠ACE=∠A=30°,∴∠BCE=60°,∴△BEC是等边三角形,∴BE=CE.∴AE=CE=BE.∴AD=AB=CE.又由旋转的性质知:FC=EC,∠FCE=90°,∴EF=CE,∴==.∵∠ADE=30°,∴sin∠ADE=.故答案是:;;(2)不变,理由:如图2,过点D作DG∥BC交AB于点G,则△ADG是直角三角形.∵∠DAG=30°,DE=AE,设DG=x,∴∠AED=30°,AD=x,∠DEG=∠DGE=60°.∴DE=DF=x,sin∠ADE=.∵∠EDF=90°,∴EF=x.∴==.∵∠ADE=30°,∴sin∠ADE=.(3)过点E作EG⊥AD于点G,设AE=x,则DE=nx.∵∠CAB=a,∴AG=cosα•x,EG=sinα•x.∴DG==•x.∴AD=cosα•x+•x.∵∠EDF=90°,DE=DF,∴EF=DE=nx.∴==,sin∠ADE===.【点睛】本题考查了等腰三角形的性质和等边三角形的判定,作辅助线构造直角三角形,根据锐角三角函数的定义求解.8.问题发现如图,正方形将正方形绕点旋转,直线交于点请直接写出线段与的数量关系是,位置关系是_;拓展探究如图,矩形将矩形绕点旋转,直线交于点中线段关系还成立吗/若成立,请写出理由;若不成立,请写出线段的数量关系和位置关系,并说明理由;解决问题在的条件下,矩形绕点旋转过程中,请直接写出当点与点重合时,线段的长,解析:;中数量关系不成立,位置关系成立.,理由见解析;或【分析】(1)证明△ADE≌△CDG(SAS),可得AE=CG,∠DAG=∠DCG,再由直角三角形两个锐角互余即可证得AE⊥CG;(2)先证明△ADE∽△CDG,利用相似三角形的性质证明即可.(3)先通过作图找到符合题意的两种情况,第一种情况利用勾股定理求解即可;第二种情况借助相似三角形及勾股定理计算即可.【详解】(1);理由如下:由题意知在正方形中,,,在△ADE与△CDG中,∴△ADE≌△CDG(SAS)∴,∵对顶角相等,∴.(2)(1)中数量关系不成立,位置关系成立.即:理由如下:由题意知在矩形中,,,,∵对顶角相等∴.综上所述:(3)如图1,当点G、P在点A处重合时,连接AE,则此时∠ADE=∠GDE=90°∴在Rt△ADE中,AE=,如图1,当点G、P重合时,则点A、E、G在同一直线上,∵AD=DG=4,∴∠DAG=∠DGA,∵∠ADC=∠AGP=90°,∠AOD=∠COG,∴∠DAG=∠COG,∴∠DGA=∠COG,又∵∠GDO=∠CDG,∴△GDO∽△CDG,∴∴∴DO=2,CG=2OG,∴OC=DC-DO=8-2=6,∵在Rt△COG中,OG2+GC2=OC2,∴OG2+(2OG)2=62,∴OG=(舍负),∴CG=,由(2)得:∴AE=,综上所述,AE的长为或.【点睛】本题综合考查了全等三角形及相似三角形的判定及性质,以及勾股定理的应用,根据题意画出符合题意的图形是解决本题的关键.9.[问题解决](1)如图1.在平行四边形纸片ABCD(AD>AB)中,将纸片沿过点A的直线折叠,使点B落在AD上的点处,折线AE交BC于点E,连接B'E.求证:四边形是菱形.[规律探索](2)如图2,在平行四边形纸片ABCD(AD>AB)中,将纸片沿过点P的直线折叠,点B恰好落在AD上的点Q处,点A落在点A′处,得到折痕FP,那么△PFQ是等腰三角形吗?请说明理由.[拓展应用](3)如图3,在矩形纸片ABCD(AD>AB)中,将纸片沿过点P的直线折叠,得到折痕FP,点B落在纸片ABCD内部点处,点A落在纸片ABCD外部点处,与AD交于点M,且M=M.已知:AB=4,AF=2,求BP的长.解析:(1)证明见解析;(2)是,理由见解析;(3).【分析】(1)由平行线的性质和翻折可推出,即.故四边形是平行四边形,再由翻折可知,即证明平行四边形是菱形.(2)由翻折和平行线的性质可知,,即得出,即是等腰三角形.(3)延长交AD于点G,根据题意易证,得出结论,.根据(2)同理可知为等腰三角形,即FG=PG.再在中,,即可求出,最后即可求出.【详解】(1)由平行四边形的性质可知,∴,由翻折可知,∴,∴.∴四边形是平行四边形.再由翻折可知,∴四边形是菱形.(2)由翻折可知,∵,∴,∴,∴QF=QP,∴是等腰三角形.(3)如图,延长交AD于点G,根据题意可知,在和中,,∴,∴,.根据(2)同理可知为等腰三角形.∴FG=PG.∵,∴在中,,∴,∴,∴.【点睛】本题为矩形的折叠问题.考查矩形的性质,折叠的性质,平行线的性质,菱形的判定,等腰三角形的判定和性质,全等三角形的判定和性质以及勾股定理,综合性强.掌握折叠的性质和正确的连接辅助线是解答本题的关键.10.《函数的图象与性质》拓展学习片段展示:(问题)如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a=.(操作)将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.(探究)在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.(应用)P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.解析:【问题】:a=;【操作】:y=;【探究】:当1<x<2或x>2+时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【详解】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P在C的左侧或F的右侧部分时,设P[m,],根据h≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P不可能在DE的上方;③P与O或A重合时,符合条件,m=0或m=4.试题解析:【问题】∵抛物线y=a(x﹣2)2﹣经过原点O,∴0=a(0﹣2)2﹣,a=;【操作】:如图①,抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+如图②,图象G对应的函数解析式为:y=;【探究】:如图③,由题意得:当y=1时,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S△PDE=DE•h≥1,∴h≥1;①当P在C的左侧或F的右侧部分时,设P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,),∴HM=﹣1=<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.考点:二次函数综合题.11.问题背景:如图1,在矩形中,,,点是边的中点,过点作交于点.实验探究:(1)在一次数学活动中,小王同学将图1中的绕点按逆时针方向旋转,如图2所示,得到结论:①_____;②直线与所夹锐角的度数为______.(2)小王同学继续将绕点按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当旋转至、、三点共线时,则的面积为______.解析:(1),30°;(2)成立,理由见解析;拓展延伸:或【分析】(1)通过证明,可得,,即可求解;(2)通过证明,可得,,即可求解;拓展延伸:分两种情况讨论,先求出,的长,即可求解.【详解】解:(1)如图1,,,,,如图2,设与交于点,与交于点,绕点按逆时针方向旋转,,,,,又,,直线与所夹锐角的度数为,故答案为:,;(2)结论仍然成立,理由如下:如图3,设与交于点,与交于点,将绕点按逆时针方向旋转,,又,,,,又,,直线与所夹锐角的度数为.拓展延伸:如图4,当点在的上方时,过点作于,,,点是边的中点,,,,,,,,、、三点共线,,,,,由(2)可得:,,,的面积;如图5,当点在的下方时,过点作,交的延长线于,同理可求:的面积;故答案为:或.【点睛】本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.12.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解析:(1)①1;②40°;(2),90°;(3)AC的长为3或2.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【详解】(1)问题发现:①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,(2)类比探究:如图2,,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸:①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(x)2+(x−2)2=(2)2,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(x)2+(x+2)2=(2)2.x2+x-6=0,(x+3)(x-2)=0,x1=-3,x2=2,∴AC=2;.综上所述,AC的长为3或2.【点睛】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.13.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2.则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长解析:解:(1)①DE∥AC.②.(2)仍然成立,证明见解析;(3)或.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=60°.∴△ADC是等边三角形.∴∠DCA=60°.∴∠DCA=∠CDE=60°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=2AC.又∵AD=AC∴BD=AC.∵∴.(2)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,过点D作DG⊥BC于G,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=,∴BF1=,BF2=BF1+F1F2=+=,故BF的长为或.14.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为
.(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
解析:(1)AD=BE,AD⊥BE.(2)AD=BE,AD⊥BE.(3)5-3≤PC≤5+3.【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-3≤BE≤5+3.【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延长BE交AD于点F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案为AD=BE,AD⊥BE.(2)结论:AD=BE,AD⊥BE.理由:如图2中,设AD交BE于H,AD交BC于O.∵△ACB与△DCE均为等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-3,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+3,∴5-3≤BE≤5+3,即5-3≤PC≤5+3.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.15.(性质探究)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.(迁移应用)(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.(拓展延伸)(4)若DF交射线AB于点F,(性质探究)中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.解析:(1)等腰三角形,理由见解析;(2)见解析;(3);(4)或【分析】(1)如图1中,△AFG是等腰三角形,利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【详解】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,,∴,设CD=2x,AC=3x,则AD=,∴.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由题意:=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=,∴BE==,AB=4a,∴tan∠BAE=.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴,∴,∴,由题意:=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=,∴AD=,∴,AB=,∴tan∠BAE=,综上所述,tan∠BAE的值为或.【点睛】本题是一道综合题,主要涉及到等腰三角形的判定及其性质、全等三角形的判定和性质、三角形中位线定理、相似三角形的判定及其性质、勾股定理的应用等知识点,解题的关键是综合运用所学到的相关知识.16.(阅读理解)如图1,,的面积与的面积相等吗?为什么?解:相等,在和中,分别作,,垂足分别为,.,.,四边形是平行四边形,.又,,.(类比探究)问题①,如图2,在正方形的右侧作等腰,,,连接,求的面积.解:过点作于点,连接.请将余下的求解步骤补充完整.(拓展应用)问题②,如图3,在正方形的右侧作正方形,点,,在同一直线上,,连接,,,直接写出的面积.解析:①;②.【分析】①过点作于点,连接,可得,根据材料可知,再由等腰三角形性质可知,即可求出;②连接CE,证明,即可得,由此即可求解.【详解】解:①过点作于点,连接,∵在正方形中,,∴,∴,∵,,∴,∵在正方形中,,∴;②,过程如下:如解图3,连接CE,∵在正方形、正方形中,∴,∴,∴,∵在正方形中,,,∴.【点睛】本题主要考查了正方形性质和平行线判定和性质以及三角形面积,解题关键是理解阅读材料,根据平行线找到等底等高的三角形.17.(1)阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决:勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形的中心,作,将它分成4份.所分成的四部分和以为边的正方形恰好能拼成以为边的正方形.若,求的值;(3)拓展探究:如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形的边长为定值,小正方形的边长分别为.已知,当角变化时,探究与的关系式,并写出该关系式及解答过程(与的关系式用含的式子表示).解析:(1)见详解;(2)EF=或;(3)c+b=n,理由见详解【分析】(1)根据大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即可得到结论;(2)设EF=a,FD=b,由图形的特征可知:a+b=12,a-b=±5,进而即可求解;(3)设正方形E的边长为e,正方形F的边长为f,由相似三角形的性质可知:,结合勾股定理,可得,进而即可求解.【详解】(1)证明:∵在图①中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.∴c2=ab×4+(b−a)2,化简得:a2+b2=c2;(2)由题意得:正方形ACDE被分成4个全等的四边形,设EF=a,FD=b,∴a+b=12,∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,∴,,,当EF>DF时,∵,∴a-b=5,∴,解得:a=,∴EF=;同理,当EF<DF时,EF=故EF=或(3)设正方形E的边长为e,正方形F的边长为f,∵,∴图中①与②与③,三个直角三角形相似,∴,即:,∵图形③是直角三角形,∴,∴,即:c+b=n,【点睛】本题主要考查勾股定理及其证明过程,相似三角形的判定和性质,找准图形中线段长和面积的数量关系,是解题的关键.18.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰中,,点M是上的一点,,,将绕点A旋转后得到,连接,则___________.(2)类比探究:如图②,在“筝形”四边形中,于点B,于点D,点P、Q分别是上的点,且,求的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形,,求四边形的面积.解析:(1);(2)2a;(3)【分析】(1)由旋转的性质可得△ABM≌△ACN,从而得出∠MCN=∠ACB+∠ACN=90°,再根据勾股得出AM的长;(2)将绕点C旋转后得到,利用SAS得出△QCP≌△QCM,从而得出的周长(3)连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△DAB′,连接BB′,延长BA,作B′E⊥BE;易证△AFB′是等腰直角三角形,△AEB是等腰直角三角形,利用勾股定理计算AE=B′E=,BB′=,求△ABB′和△BDB′的面积和即可.【详解】(1)∵,∴∠B=∠ACB=45°,将绕点A旋转后得到,此时AB与AC重合,由旋转可得:△ABM≌△ACN,∴∠BAM=∠CAN,AM=AN,BM=CN=1,∠B=∠ACN=45°,∴∠MCN=∠ACB+∠ACN=90°,∠MAN=∠ABC=90°,∴∴;(2)∵,,∴将绕点C旋转后得到,此时BC与DC重合,∴△BCP≌△DCM,∴∠DCM=∠PCB,BP=DM,PC=CM,∵,∴,∴,∵PC=CM,QC=QC,∴△QCP≌△QCM,∴PQ=QM,∴的周长=AQ+AP+PQ=AQ+AP+QM=AQ+AP+DQ+DM=AQ+AP+DQ+BP=AD+AB,∵,∴的周长=2a;(3)如图3,连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购主管的工作计划与试题及答案
- 幼儿教师教育试题及答案
- 工程造价咨询的试题及答案
- 2025-2030智慧运输行业市场发展分析及前景趋势与商业模式报告
- 2025-2030智慧能源管理系统建设及城市微电网规划布局分析研究报告
- 2025-2030智慧职业培训系统(TS)行业市场供需分析及投资评估规划分析研究报告
- 2025-2030智慧社区行业市场深度剖析及未来走向与投资策略研究报告
- 2025-2030智慧社区服务行业发展深度探讨及未来市场动态趋势分析报告
- 2025-2030智慧社区建设技术集成应用场景市场竞争格局发展前景政策影响评估研究
- 2025-2030智慧环保监测网络行业市场需求增长技术发展趋势需求调研投资机会评估
- 高等职业教育产教融合共同体建设研究
- 监理项目合作管理办法
- 特殊气候条件下施工安全保障措施与应对策略
- 2025年广东中考数学试卷试题真题及答案详解(精校打印版)
- 监控设备改造方案(3篇)
- 混凝土结构设计原理-006-国开机考复习资料
- 人教版必修第一册Unit2Travelling around Reading and Thinking课件
- 旋挖钻机地基承载力验算2017.7
- 英语课程标准研究与教材分析(第2版)课件全套 第1-9章 英语课程标准和英语课程的基本概念 -英语教材难度分析
- 版式设计课件:版式设计概述
- 土方公司挂靠协议书
评论
0/150
提交评论