(完整版)数学苏教版七年级下册期末重点中学试卷经典答案_第1页
(完整版)数学苏教版七年级下册期末重点中学试卷经典答案_第2页
(完整版)数学苏教版七年级下册期末重点中学试卷经典答案_第3页
(完整版)数学苏教版七年级下册期末重点中学试卷经典答案_第4页
(完整版)数学苏教版七年级下册期末重点中学试卷经典答案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)数学苏教版七年级下册期末重点中学试卷经典答案一、选择题1.下面运算中正确的是()A.(x3)2=x5 B.(x﹣y)2=x2﹣y2C.﹣3a2b3﹣2b3a2=﹣5a2b3 D.(﹣3)2=9答案:C解析:C【分析】根据幂的乘方的性质,完全平方公式,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】解:A、(x3)2=x6,故本选项不符合题意;B、(x−y)2=x2−2xy+y2,故本选项不符合题意;C、−3a2b3与−2b2a3不属于同类项,不能运算,故本选项不符合题意;D、(−3)2=9,故本选项符合题意.故选:D.【点睛】本题考查了合并同类项,幂的乘方,完全平方公式的应用.理清指数的变化是解题的关键.2.如图,已知直线a,b被直线c所截,下列有关与说法正确的是()A.与是同位角 B.与是内错角C.与是同旁内角 D.与是对顶角答案:A解析:A【分析】根据同位角的定义判断即可.【详解】解:∠1和∠2是同位角,故选:A.【点睛】本题考查了同位角、内错角、同旁内角及对顶角的定义,能熟记同位角、内错角、同旁内角及对顶角的定义的内容是解此题的关键,注意数形结合.3.已知x,y互为相反数且满足二元一次方程组,则k的值是()A.﹣1 B.0 C.1 D.2答案:A解析:A【分析】根据,互为相反数得到,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得和的值,最后代入求值.【详解】解:由题意可得,②﹣①,得:y=﹣1,把y=﹣1代入①,得:x﹣1=0,解得:x=1,把x=1,y=﹣1代入2x+3y=k中,k=2×1+3×(﹣1)=2﹣3=﹣1,故选:A.【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.4.已如下列命题:①若,则;②当时,若,则;③若,则;④若,则.其中真命题共有()A.1个 B.2个 C.3个 D.4个答案:C解析:C【分析】根据绝对值和不等式的性质对各命题的真假进行判断.【详解】解:若|x|=3,则x=3或x=-3,所以①为假命题;当a>b时,若c>0,根据不等式的基本性质二,有ac>bc;所以②为真命题;若a≤0,则|a|=−a,所以③为真命题;若ma2>na2,则a2>0,所以m>n,所以④为真命题.故选:C.【点睛】本题考查了命题与定理:灵活应用绝对值和不等式的性质是解决本题的关键.5.已知关于的不等式组的解集为,则的值为A.1 B. C.2 D.答案:A解析:A【分析】求出不等式组的解集,再根据题目已知的解集,确定关于a的一元一次方程,求得a的值.【详解】解不等式,得:,解不等式,得:,所以不等式组的解集为,不等式组的解集为,,解得,故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行D.若数使得,则一定小于0答案:D解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.把一根起点为0的数轴弯折成如图所示的样子,虚线最下面第1个数字是0,往上第2个数字是6,第3个数字是21,…,则第5个数字是()A.78 B.80 C.82 D.89答案:A解析:A【分析】观察根据排列的规律得到第1个数字为0,第2个数字为0加6个数即为6,第3个数字为从6开始加15个数得到21,第4个数字为从21开始加24个数即45,…,由此得到后面加的数比前一个加的数多9,由此得到第5个数字为0+6+(6+9×1)+(6+9×2)+(6+9×3).【详解】解:∵第一个数字为0,第二个数字为0+6=6,第三个数字为0+6+15=21,第四个数字为0+6+15+24=45,第五个数字为0+6+15+24+33=78,故选:A.【点睛】此题主要考查了数字变化规律,发现数在变化过程中各边上点的数字的排列规律是解题关键.8.如图,△OAB为等腰直角三角形(∠A=∠B=45°,∠AOB=90°),△OCD为等边三角形(∠C=∠D=∠COD=60°),满足OC>OA,△OCD绕点O从射线OC与射线OA重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是()A.当α=15°时,DC∥ABB.当OC⊥AB时,α=45°C.当边OB与边OD在同一直线上时,直线DC与直线AB相交形成的锐角为15°D.整个旋转过程,共有10个位置使得△OAB与△OCD有一条边平行答案:A解析:A【分析】设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∥AB;当OC⊥AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行.【详解】解:设OC与AB交点为M,OD与AB交点为N,当α=15°时,∠OMN=α+∠A=60°,∴∠OMN=∠C,∴DC∥AB,故A正确;当OC⊥AB时,α+∠A=90°或α﹣180°=90°﹣∠A,∴α=45°或225°,故B错误;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况,故C错误;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得△OAB与△OCD有一条边平行,故D错误;故选A.【点睛】本题主要考查了平行线的性质与判定,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题9.计算(﹣2x3y2)3•4xy2=_____.解析:﹣32x10y8【详解】试题分析:分析:先算乘方,再算乘法(﹣2x3y2)3=(﹣2)3(x3)3(y2)3=﹣8x9y6,所以(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8.解:(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8点评:本题考查整式的乘法混合运算,按照运算顺序先算乘方再算乘法.10.“两条直线被第三条直线所截,内错角相等”是___命题.(填“真”或“假”)解析:假【分析】由正确的题设得出正确的结论是真命题,由正确的题设不能得出正确结论是假命题,判定此命题的正误即可得到答案.【详解】解:∵当两条平行线被第三条直线所截,内错角相等,∴两条直线被第三条直线所截,内错角有相等或不相等两种情况∴原命题错误,是假命题,故答案为假.【点睛】本题考查了判断命题的真假的知识,解题的关键是根据命题作出正确的判断,必要时可以举出反例.11.一个多边形的内角和是它的外角和的3倍,则这个多边形是_____边形.解析:八【分析】多边形的内角和为外角和为再列方程解方程可得答案.【详解】解:设这个多边形为边形,则故答案为:八【点睛】本题考查的是多边形的内角和与外角和,掌握多边形的内角和定理与外角和定理是解题的关键.12.已知,,则的值为__________.解析:6【分析】直接提取公因式,进而分解因式,再整体代入数据即可得出答案.【详解】∵,,∴=3×2=6.故答案为:6.【点睛】本题主要考查了分解因式的应用以及代数式的求值,正确找出公因式是解题关键.13.已知关于,的方程组,当正整数_____时,方程组有整数解.解析:4【分析】将t看做未知数,求出x与y,再求出有整数解时,正整数t的值.【详解】解:由方程组得t≠2,解方程组得:,,∵方程组有整数解,当t=4时,,,故答案为:4.【点睛】此题考查了二元一次方程组的解,解答本题的关键是用t表示出x和y的值,此题难度不大.14.某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3m,其剖面如图所示,那么需要购买地毯_______m2.解析:【分析】地毯的长度实际是所有台阶的宽加上台阶的高,再由主楼梯宽3米可得出地毯的面积.【详解】解:由题意得:地毯的长为:,∴地毯的面积.故答案为:.【点睛】本题主要考查了平移的性质的实际应用,解题的关键是先求出地毯的长度.15.若等腰三角形的周长为20cm,那么底边x的取值范围是______.答案:【分析】设等腰三角形的腰长为a,根据等腰三角形的性质及三角形的三边关系进行求解即可.【详解】解:设等腰三角形的腰长为a,根据题意得:,根据三角形的三边关系得:,解得,;故答案为.解析:【分析】设等腰三角形的腰长为a,根据等腰三角形的性质及三角形的三边关系进行求解即可.【详解】解:设等腰三角形的腰长为a,根据题意得:,根据三角形的三边关系得:,解得,;故答案为.【点睛】本题主要考查等腰三角形的性质、三角形的三边关系及一元一次不等式组的解法,熟练掌握等腰三角形的性质、三角形的三边关系及一元一次不等式组的解法是解题的关键.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=18,则S△ADF-S△BEF=____.答案:3【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=18,就可以求出三角形ABD的面积解析:3【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=18,就可以求出三角形ABD的面积和三角形ABE的面积.【详解】解:∵点D是AC的中点,∴AD=AC,∵S△ABC=18,∴S△ABD=S△ABC=×18=9.∵EC=2BE,S△ABC=18,∴S△ABE=S△ABC=×18=6,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=9-6=3.故答案为:3.【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.17.计算:(1)(2)(-1)+(-)-2-(3.14-π)0答案:(1);(2)4.【分析】(1)先算乘方,再根据单项式乘单项式法则计算即可;(2)根据零指数幂及负指数幂的计算公式计算即可.【详解】解:(1)(2)(-1)+(-)-解析:(1);(2)4.【分析】(1)先算乘方,再根据单项式乘单项式法则计算即可;(2)根据零指数幂及负指数幂的计算公式计算即可.【详解】解:(1)(2)(-1)+(-)-2-(3.14-π)0.【点睛】本题考查了单项式乘单项式及零指数幂与负指数幂,熟练掌握单项式乘单项式的计算方法及零指数幂与负指数幂的相关公式是解题的关键.18.因式分解(1)(2)答案:(1);(2)【分析】(1)原式首先根据平方差公式分解,然后再根据完全平方公式再进行二次分解即可;(2)原式首先提取公因式(x-y),然后再根据平方差公式二次分解即可.【详解】解:(1)解析:(1);(2)【分析】(1)原式首先根据平方差公式分解,然后再根据完全平方公式再进行二次分解即可;(2)原式首先提取公因式(x-y),然后再根据平方差公式二次分解即可.【详解】解:(1)==(2)===【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.解下列方程组(其中第(1)题用代入消元法解)(1)(2)答案:(1)(2)【分析】(1)先将变形为再代入中,求出y的值,再代入即可求出x的值;(2)根据加减消元法求解即可.【详解】解:(1)将①变形为:③,将③代入②得,解得将代入③解析:(1)(2)【分析】(1)先将变形为再代入中,求出y的值,再代入即可求出x的值;(2)根据加减消元法求解即可.【详解】解:(1)将①变形为:③,将③代入②得,解得将代入③,得原方程组的解为:;(2)①×3-②×2,得13y=0,解得y=0,把y=0代入②,得3x-0=6,解得x=2,∴原方程组的解为.【点睛】本题考查的是二元一次方程组的解法,运用代入法和加减法是解二元一次方程组常用的方法.20.求不等式组的正整数解.答案:不等式组的正整数解为2,3,4【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】解:解不等式①得:解不等式②得:原不等式组的解集为则不等式组的正整解析:不等式组的正整数解为2,3,4【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】解:解不等式①得:解不等式②得:原不等式组的解集为则不等式组的正整数解为2,3,4.【点睛】本题主要考查了解一元一次不等式组合求不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE,CD相交于点F,求证:∠CEF=∠CFE.答案:见解析【分析】利用三角形高的定义,易证∠ADC=90°,再根据同角的余角相等,可证得∠ACD=∠B,利用角平分线的定义可知∠CAE=∠BAE,然后利用三角形外角的性质,可证得结论【详解】证明解析:见解析【分析】利用三角形高的定义,易证∠ADC=90°,再根据同角的余角相等,可证得∠ACD=∠B,利用角平分线的定义可知∠CAE=∠BAE,然后利用三角形外角的性质,可证得结论【详解】证明:∵∠ACB=90°,CD是高,∴∠ACD+∠CAB=90°,∠B+∠CAB=90°,∴∠ACD=∠B∵AE是角平分线,∴∠CAE=∠BAE,∠CFE=∠CAE+∠ACD.∴∠CEF=∠BAE+∠B,即∠CFE=∠CEF.【点睛】本题考查角度的证明,在证明角度问题中,常用的方法有2种:角度转化法和方程思想法,本题即利用角度转化来求解.22.某地上网有两种收费方式,用户可以任选其一:(A)计时制:2.8元/时;(B)包月制:60元/月;此外,每一种上网方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种上网方式合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.答案:(1)选择A种方式比较合算;(2)选择B种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A种方式合算;当上网时间t>小时,选用B种方式合算【分析】(1)设用户上解析:(1)选择A种方式比较合算;(2)选择B种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A种方式合算;当上网时间t>小时,选用B种方式合算【分析】(1)设用户上网的时间为t小时,分别用t表示出两种收费方式,代入时间20小时,分别计算,对比分析即可.(2)将120分别代入两种收费方式的表达式中,求得各自的时间,对比分析即可.(3)令两种方式的关系式分别相等,大于或小于,分类讨论即可.【详解】解:(1)设用户上网的时间为t小时,则A种方式的费用为2.8t+1.2t=4t元;B种方式的费用为(60+1.2t)元,当t=20时,4t=80,60+1.2t=84,因为80<84,所以选择A种方式比较合算;(2)若用户有120元钱上网,由题意:,分别解得,因为30<50,所以用户选择B种方式比较合算;(3)当两种方式费用相同时,即,解得t=,所以此时选择两种方式一样合算;令,解得,所以当上网时间t<时,选用A种方式合算;令,解得,所以当上网时间t>时,选用B种方式合算.【点睛】本题考察一元一次不等式与一次函数在方案类问题中的实际应用,根据题意列出函数关系并讨论是解题重点.23.阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或-1.所以该方程的正整数解为和.(1)方程3x-5y=11的全部整数解表示为:(t为整数),则=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.答案:(1)-1;(2)t=-2,-1,0,1;(3)13组【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法解析:(1)-1;(2)t=-2,-1,0,1;(3)13组【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【详解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整数解表示为:(t为整数),则θ=-1,故答案为-1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为,解得-3<t<2.因为t为整数,所以t=-2,-1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t为整数).∵,解得<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.【点睛】本题考查了二元一次方程的解,一元一次不等式的整数解,理解题意、掌握解题方法是本题的关键.24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.(现象解释)如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图3,有两块平面镜OM,ON,且∠MON=55,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,求∠BEC的大小.(深入思考)如图4,有两块平面镜OM,ON,且∠MONα,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果)答案:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.25.已知:∠MON=36°,OE平分∠MO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论