难点解析-北师大版8年级数学上册期中试题_第1页
难点解析-北师大版8年级数学上册期中试题_第2页
难点解析-北师大版8年级数学上册期中试题_第3页
难点解析-北师大版8年级数学上册期中试题_第4页
难点解析-北师大版8年级数学上册期中试题_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版8年级数学上册期中试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、到轴的距离等于5的点组成的图形是(

)A.过点且与轴平行的直线B.过点且与轴平行的直线C.分别过点和且与轴平行的两条直线D.分别过点和且与轴平行的两条直线2、点A(2,-1)关于y轴对称的点B的坐标为(

)A.(2,1) B.(-2,1) C.(2,-1) D.(-2,-1)3、下列计算正确的是(

)A. B. C. D.4、下列说法中,正确的是(

)A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.正实数包括正有理数和正无理数D.实数可以分为正实数和负实数两类5、《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为(

)A. B.C. D.6、已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣57、点P(3,-2)所在的象限是(

)A.第—象限 B.第二象限 C.第三象限 D.第四象限二、多选题(3小题,每小题2分,共计6分)1、以下几个数中无理数有()A. B. C. D. E.π2、下列计算正确的是(

)A. B.C. D.3、下列各式中,计算正确的是(

)A. B.C. D.第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、如果方程无实数解,那么的取值范围是_______.2、化简:①______;②______;③______.3、下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有_____个.4、若一个三角形的三边长分别为5,12,13,则此三角形的最长边上的高为_____.5、代数式有意义时,x应满足的条件是______.6、附加题:观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:________.7、一个正数a的两个平方根是和,则的立方根为_______.8、若、为实数,且,则的值为__________.9、若的整数部分是,小数部分是,则__.10、若,则x=____________.四、解答题(6小题,每小题10分,共计60分)1、如图,已知和中,,,,点C在线段BE上,连接DC交AE于点O.(1)DC与BE有怎样的位置关系?证明你的结论;(2)若,,求DE的长.2、若和互为相反数,求的值.3、在计算的值时,小亮的解题过程如下:解:原式①②③④(1)老师认为小亮的解法有错,请你指出:小亮是从第_________步开始出错的;(2)请你给出正确的解题过程.4、在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化.比如:(1);(2).试试看,将下列各式进行化简:(1);(2);(3).5、已知A(3,1),B(8,5),若用(3,1)→(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,请用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.6、在直角坐标平面内,已知点A的坐标(﹣1,4),点B的位置如图所示,点C是第一象限内一点,且点C到x轴的距离是2,到y轴的距离是4(1)写出图中点B的坐标;(2)在图中描出点C,并写出图中点C的坐标:;(3)画出△ABO关于y轴的对称图形△A′B′O;(4)联结A′B、BB′、B′C、A′C.那么四边形A′BB′C的面积等于-参考答案-一、单选题1、D【解析】【分析】到轴的距离等于5的点组成的图形是平行于轴,且到轴的距离是5的直线,分两种情况解答即可.【详解】解:到轴的距离等于5的点组成的图形是与轴平行,且到轴的距离是5的两条直线,到轴的距离等于5的点组成的图形是分别过点和且与轴平行的两条直线,故选:D.【考点】本题考查了点的坐标意义以及与图形相结合的具体运用,要把点的坐标和图形结合起来求解.2、D【解析】【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同.则点关于轴对称的点的坐标为,故选:D.【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.3、D【解析】【分析】根据二次根式的乘法运算法则对A、D选项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断.【详解】解:,故A选项错误,D选项正确;,故B选项错误;,故C选项错误.故选:D.【考点】本题考查二次根式的运算及积的乘方.熟练掌握各运算法则是解题关键.4、C【解析】【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C.【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型.5、B【解析】【分析】根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.【详解】解:根据勾股定理可得:x2=(x-4)2+(x-2)2,故选:B.【考点】本题考查了勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.6、A【解析】【分析】根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.【详解】解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.【考点】考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7、D【解析】【分析】根据第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.【详解】解:点P(3,-2)所在的象限是第四象限,故选:D.【考点】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、多选题1、BE【解析】【分析】根据有理数和无理数的定义逐项判断即可得.【详解】解:A、,2是有理数,此项不符题意;B、是无理数,此项符合题意;C、是分数,属于有理数,此项不符题意;D、是无限循环小数,是有理数,此项不符题意;E、是无理数,此选项符合题意;故选BE.【考点】本题考查了无理数和有理数的定义,熟记定义是解题关键.2、BD【解析】【分析】根据二次根式加法法则,乘法和除法法则,二次根式化简,然后分析作出判断即可.【详解】解:A.,选项错误,不符合题意.B.,选项正确,符合题意.C.,选项错误,不符合题意.D.,选项正确,符合题意.故选:B、D【考点】本题考查了二次根式的运算,二次根式的化简,是解题的关键.3、ACD【解析】【分析】根据二次根式的加减乘除运算,对选项逐个判断即可.【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项正确,符合题意;D、,选项正确,符合题意;故选ACD【考点】此题考查了二次根式的加减乘除运算,熟练掌握相关运算法则是解题的关键.三、填空题1、【解析】【分析】先移项,再根据算术平方根的性质得到答案.【详解】,,∵的结果是非负数,∴当k-2<0,方程无实数解,即k<2,故答案为:k<2.【考点】此题考查方程无解的情况,算术平方根的性质.2、

4

【解析】【分析】①利用二次根式化简即可;②利用二次根式的乘法法则进行计算即可;③先把各个二次根式化简成最简二次根式,然后进行减法计算即可.【详解】①②③故填(1).4

(2).

(3).【考点】本题考查二次根式化简以及计算,熟练掌握运算法则是解题关键.3、3【解析】【分析】根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.【详解】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【考点】本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.4、【解析】【分析】首先根据三角形的三边长证明三角形是直角三角形,再根据直角三角形的面积公式计算出斜边上的高即可.【详解】∵,∴此三角形是直角三角形,设最长边上的高为h,由三角形面积得:,解得:.故答案为:.【考点】此题主要考查了勾股定理逆定理,以及直角三角形的面积计算,关键是熟练掌握勾股定理的逆定理:如果三角形的三边长,b,c满足,那么这个三角形就是直角三角形.5、.【解析】【分析】直接利用二次根式的定义和分数有意义求出x的取值范围.【详解】解:代数式有意义,可得:,所以,故答案为.【考点】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.6、11,60,61【解析】【分析】由所给勾股数发现第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,计算求解即可.【详解】解:由所给勾股数发现第一个数是奇数,且逐步递增2,∴知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,解得x=60,∴第5组数是:11、60、61故答案为:11、60、61.【考点】本题考查了数字类规律,勾股定理等知识.解题的关键在于推导规律.7、2【解析】【分析】根据一个正数的平方根互为相反数,将和相加等于0,列出方程,解出b,再将b代入任意一个平方根中,进行平方运算求出这个正数a,将算出后,求立方根即可.【详解】∵和是正数a的平方根,∴,解得,将b代入,∴正数,∴,∴的立方根为:,故填:2.【考点】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.8、5【解析】【分析】根据被开方数的非负性可先求出a、b的值,然后代入求解即可.【详解】解:由可得:∴,∴,即,∴,∴,故答案为5.【考点】本题主要考查被开方数的非负性,关键是熟练掌握算术平方根的性质.9、.【解析】【分析】先确定出的范围,即可推出a、b的值,把a、b的值代入求出即可.【详解】解:,,,.故答案为:.【考点】考查了估算无理数的大,解此题的关键是确定的范围8<<9,得出a,b的值.10、-1【解析】【分析】根据立方根的定义可得x-1的值,继而可求得答案.【详解】∵,∴x-1=,即x-1=-2,∴x=-1,故答案为-1.【考点】本题考查了立方根的定义,熟练掌握是解题的关键.四、解答题1、(1),见解析;(2)【解析】【分析】(1)易证,再根据全等性质即可求得;(2)由BC和CE可得BE,再由全等的,再根据勾股定理即可求得;【详解】(1).证明:.在和中,.(2),..【考点】本题考查三角形全等和勾股定理,掌握三角形全等条件是解题的关键.2、【解析】【分析】根据两个数的立方根互为相反数得出:2a-1=3b-1,推出2a=3b,即可得出答案.【详解】∵和互为相反数,∴+=0,∴2a-1+1-3b=0,∴2a-1=3b-1,2a=3b,∴=.【考点】本题考查了立方根和相反数的概念,关键是由两个数的立方根互为相反数得出两个数互为相反数.3、(1)③;(2)答案见解析.【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故③错误,故填③;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4、(1);(2);(3)2【解析】【分析】(1)根据第一个例子可以解答本题;(2)根据第二个例子和平方差公式可以解答本题;(3)根据第二个例子和平方差公式把原式化简,找出式子的规律得出结果即可.【详解】解:(1);(2);(3)=,=,=,=3-1=2.【考点】本题考查了二次根式的混合运算、分母有理化和平方差公式,解答本题的关键是明确分母有理化的方法.5、走法一:(3,1)→(6,1)→(6,2)→(7,2)→

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论