考点解析浙江省诸暨市中考数学真题分类(平行线的证明)汇编章节测评练习题_第1页
考点解析浙江省诸暨市中考数学真题分类(平行线的证明)汇编章节测评练习题_第2页
考点解析浙江省诸暨市中考数学真题分类(平行线的证明)汇编章节测评练习题_第3页
考点解析浙江省诸暨市中考数学真题分类(平行线的证明)汇编章节测评练习题_第4页
考点解析浙江省诸暨市中考数学真题分类(平行线的证明)汇编章节测评练习题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省诸暨市中考数学真题分类(平行线的证明)汇编章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,在三角形ABC中,,,D是BC上一点,将三角形ABD沿AD翻折后得到三角形AED,边AE交射线BC于点F,若,则(

)A.120° B.135° C.110° D.150°2、对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=33、如图,直线,等边三角形的顶点、分别在直线和上,边与直线所夹的锐角为,则的度数为(

)A. B. C. D.4、如图,∠B=∠C,则∠ADC与∠AEB的大小关系是(

)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小关系不确定5、下列命题:①对顶角相等;②同位角相等,两直线平行;③若|a|=|b|,则a=b;④若x=2,则2|x|-1=3.以上命题是真命题的有(

).A.①②③④ B.①④ C.②④ D.①②④6、如图,在△ABC中,∠A=30°,∠B=50°,将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,则∠NCF的度数为(

).A.22° B.21° C.20° D.19°7、如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠1=70°,则∠C的大小为()A.40° B.50° C.75° D.85°8、如图,点E在的延长线上,下列条件不能判断的是(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,如果∠A+_____=180°,那么AD//BC.2、如图所示,请你填写一个适当的条件:_____,使AD∥BC.3、如图,点D是△ABC两条角平分线AP、CE的交点,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.4、请把以下说理过程补充完整:如图,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E与∠C互为补角吗?说说你的理由.解:因为∠1=∠2,根据___________,所以EF∥________.又因为AB∥CD,根据___________,所以EF∥________.根据____________,所以∠E+________=_________°.又因为∠C=∠D,所以∠E+________=_________°,所以∠E与∠C互为补角.5、把“对顶角相等”改写成“如果…那么…”的形式____________________________________________.6、把“同角的余角相等”改成“如果…,那么…”:_________________________________.7、同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.三、解答题(7小题,每小题10分,共计70分)1、如图,点A在MN上,点B在PQ上,连接AB,过点A作交PQ于点C,过点B作BD平分∠ABC交AC于点D,且.(1)求证:;(2)若,求∠ADB的度数.2、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.3、已知://.求证://.4、如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.5、如图,已知,垂足为点N,与交于点M.求证:.(用反证法证明)6、已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.7、如图,已知∠A=50°,∠D=40°.(1)求∠1度数;(2)求∠A+∠B+∠C+∠D+∠E的度数.-参考答案-一、单选题1、A【解析】【分析】由得到∠FDE=∠C=60°,由折叠的性质知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性质得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,进一步求得∠ADC=60°,进一步求得∠BDA.【详解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故选:A【考点】此题考查了折叠的性质,平行线性质,外角的性质等知识,熟练掌握折叠的性质是解题的关键.2、B【解析】【详解】试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.3、C【解析】【分析】根据,可以得到,,再根据等边三角形可以计算出的度数.【详解】解:如图所示:根据∴,又∵是等边三角形∴∴∴故选:C.【考点】本题主要考查了平行线的性质,即两直线平行内错角相等以及两直线平行同位角相等;明确平行线的性质是解题的关键.4、C【解析】【分析】首先在△ADC中有内角和为180°,即∠A+∠C+∠ADC=180°,在△AEB中有内角和为180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【详解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故选C.【考点】本题主要考查三角形内角和定理的应用,利用了三角形内角和为180度,此题难度不大.5、D【解析】【分析】对于①,根据对顶角的性质即可判断命题正误;对于②,根据平行线的判定定理判断命题的正误;对于③,根据绝对值的性质知a=b,据此判断命题③的正误;对于④,把x=2代入2|x|-1可得2|x|-1=3,据此判断命题的正误,综上可选出正确答案.【详解】解:对于①,由对顶角的性质知,对顶角相等,故命题①为真命题;对于②,同位角相等,两直线平行,故命题②为真命题;对于③,如果|a|=|b|,则a=b,故命题③为假命题;对于④,若x=2,则2|x|-1=3,故④为真命题.综上可知,命题是真命题的有①②④.故选D.【考点】本题主要考查命题,熟知平行线及绝对值等各知识是解题的关键.6、C【解析】【分析】根据三角形的内角和定理可得∠ACB=100°,再由折叠的性质可得∠ACN=∠A=30°,∠FCE=∠B=50°,即可求解.【详解】解:∵∠A=30°,∠B=50°,∴∠ACB=100°,∵将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,∴∠ACN=∠A=30°,∠FCE=∠B=50°,∴∠NCF=20°,故选:C.【考点】本题主要考查了图形的折叠的性质、三角形内角和定理、熟练掌握图形的折叠的性质、三角形内角和定理是解题的关键.7、B【解析】【分析】根据三角形内角和定理可求出的大小,再根据三角形外角性质即可求出的大小.【详解】∵,,∴,∴.故选B.【考点】本题考查三角形内角和定理和三角形外角的性质.利用数形结合的思想是解答本题的关键.8、D【解析】【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A、当∠5=∠B时,AB∥CD,不合题意;B、当∠1=∠2时,AB∥CD,不合题意;C、当∠B+∠BCD=180°时,AB∥CD,不合题意;D、当∠3=∠4时,AD∥CB,符合题意;故选:D.【考点】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.二、填空题1、∠B【解析】【分析】根据平行线的判定定理即可得到结论.【详解】解:∵∠A+∠B=180°,∴.故答案为:∠B.【考点】本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题的关键.2、∠FAD=∠FBC(答案不唯一)【解析】【详解】根据同位角相等,两直线平行,可填∠FAD=∠FBC;根据内错角相等,两直线平行,可填∠ADB=∠DBC;根据同旁内角互补,两直线平行,可填∠DAB+∠ABC=180°.故答案为:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.3、110【解析】【分析】根据CE,AP分别平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根据三角形内角和定理,求出∠ADC即可.【详解】解:∵CE,AP分别平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案为:110.【考点】本题考查了角平分线的性质和三角形内角和定理,熟练掌握了角平分线的性质是解题的关键.4、内错角相等,两直线平行;AB;平行于同一条直线的两条直线平行;CD;两直线平行,同旁内角互补;∠D;180;∠C;180【解析】【分析】由已知角相等,利用内错角相等两直线平行得到AB与EF平行,再由AB与CD平行,利用平行于同一条直线的两直线平行即可得EF与CD平行,然后由两直线平行,同旁内角互补可得∠E+∠D=180°,最后等量代换得到∠E+∠C=180°.【详解】解:因为∠1=∠2,根据_内错角相等,两直线平行,所以EF∥__AB_.又因为AB∥CD,根据_平行于同一条直线的两条直线平行,所以EF∥__CD___.根据两直线平行,同旁内角互补,所以∠E+_∠D=__180°.又因为∠C=∠D,所以∠E+_∠C_=_180°,所以∠E与∠C互为补角.【考点】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.5、如果两个角是对顶角,那么它们相等【解析】【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.【考点】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.6、如果两个角是同一个角的余角,那么这两个角相等【解析】【详解】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”故答案为:如果两个角是同一个角的余角,那么这两个角相等.【考点】本题考查了命题的特点,解题的关键是“如果”后面接题设,“那么”后面接结论.7、

∥;

∥;

⊥【解析】【详解】①∵a⊥b,b⊥c,∴a//c(垂直同一条直线的两直线互相平行)②a∥b,b∥c,∴a//c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)③如图所示:∵a∥b,∴∠1=∠2,又∵b⊥c,∴∠2=90°,∴∠1=∠2=90°,即a⊥c.故答案是://,//,⊥.三、解答题1、(1)见解析(2)【解析】【分析】(1)根据,利用三角形内角和.根据,得出,根据平行线判定定理即可得出结论;(2)根据,得出方程,解方程求出,根据BD平分,求出,再根据余角性质求解即可.(1)证明:∵,∴,∴.∵,∴,∴;(2)解:∵,∴,∴,∴∵BD平分,∴,∵,∴.【考点】本题考查平行线判定,三角形内角和,等角的余角性质,一元一次方程,角平分线定义,掌握平行线判定,三角形内角和,等角的余角性质,一元一次方程,角平分线定义是解题关键.2、(1)65°;(2)25°.【解析】【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.3、见解析【解析】【分析】根据,得到∠A=∠C,然后推出AF=CE,即可证明△ABF≌△CDE得到∠AFB=∠CED,则.【详解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考点】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.4、∠DEC=58°.【解析】【分析】先根据∠A=55°,∠ACB=70°得出∠ABC的度数,再由∠ABD=32°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,最后用三角形的外角即可得出结论.【详解】在△ABC中,∵∠A=55°,∠ACB=70°,∴∠ABC=55°,∵∠ABD=32°,∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论