(完整版)数学初中苏教七年级下册期末模拟试题(比较难)答案_第1页
(完整版)数学初中苏教七年级下册期末模拟试题(比较难)答案_第2页
(完整版)数学初中苏教七年级下册期末模拟试题(比较难)答案_第3页
(完整版)数学初中苏教七年级下册期末模拟试题(比较难)答案_第4页
(完整版)数学初中苏教七年级下册期末模拟试题(比较难)答案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)数学初中苏教七年级下册期末模拟试题(比较难)答案一、选择题1.下列运算中,正确的是()A.x2+3x2=4x4 B.3x3•2x4=6x7C.(x2)3=x5 D.(2xy)2=2x2y22.如图,的同位角是()A. B. C. D.3.已知点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.4.如图,从边长为的大正方形纸片中剪去一个边长为的小正方形,剩余部分沿虚线剪开,拼成一个矩形(不重叠无缝隙),则矩形的面积为()A. B.C. D.5.不等式组的解集为,则k的取值范围为()A.k>1 B.k<-1 C.k≥1 D.k≤-16.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③内错角相等;④垂线段最短.A.3 B.2 C.1 D.07.对一组数的一次操作变换记为,定义变换法则如下:;且规定,为大于1的整数.如:,,,则()A. B. C. D.8.矩形内放入两张边长分别为和的正方纸片,按照图①放置,矩形纸片没有两个正方形覆盖的部分(黑色阴影部分)的面积为;按照图②放置,矩形纸片没有被两个正方形覆盖的部分面积为;按图③放置,矩形纸片没有被两个正方形覆盖的部分的面积为.已知,,设,则下列值是常数的是()A. B. C. D.二、填空题9.计算:的结果是________.10.命题“同位角相等”是_______(填“真”或“假”,)命题11.如图,将正五边形ABCDE绕其顶点A沿逆时针方向旋转,若使点B首次落在AE边所在的直线上,则旋转的角度是____°.12.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3-2mn+n3的值_________.13.若是方程的一组解,则m的值是________.14.如图所示,在长为,宽为的草坪上修了一条宽恒为宽的弯曲小路,则余下草坪的面积为________.15.△ABC两边a=3,b=6,则第三边c的取值范围为_____.16.如图,将△ABO绕点O按逆时针方向旋转55°后得到△A′B′O,若∠AOB=20°,则∠AOB′的度数是_____.17.计算:(1)(2)(3)(4)18.因式分解:(1)3x2+6xy+3y2(2)(x2+1)2-4x219.用指定的方法解方程组.(1)用代入法解:(2)用加减法解:20.解不等式组,并把解集在数轴上表示出来.三、解答题21.如图,已知,(1)求证:(2)若平分,于点,,试求的度数22.某单位为响应政府号召,准备购买A、B两种型号的分类垃圾桶,购买时发现,A种型号的单价比B种型号的单价少50元,用2000元购买A种垃圾桶的个数与用2200元购买B种垃圾桶的个数相同.(1)求A、B两种型号垃圾桶的单价各是多少元?(2)若单位需要购买分类垃圾桶6个,总费用不超过3100元,求出所有不同的购买方式?23.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值.24.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.(现象解释)如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图3,有两块平面镜OM,ON,且∠MON=55,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,求∠BEC的大小.(深入思考)如图4,有两块平面镜OM,ON,且∠MONα,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果)25.已知:射线(1)如图1,的角平分线交射线与点,若,求的度数.(2)如图2,若点在射线上,平分交于点,平分交于点,,求的度数.(3)如图3,若,依次作出的角平分线,的角平分线,的角平分线,的角平分线,其中点,,,,,都在射线上,直接写出的度数.【参考答案】一、选择题1.B解析:B【分析】根据整式的加减运算以及乘除运算法则即可求出答案.【详解】解:A、原式=4x2,故A不符合题意.B、原式=6x7,故B符合题意.C、原式=x6,故C不符合题意.D、原式=4x2y2,故D不符合题意.故选:B.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的加减运算以及乘除运算,本题属于基础题型.2.B解析:B【分析】根据同位角的定义即可求出答案.【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即是的同位角.故选:B.【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.3.C解析:C【分析】根据第一象限的点的坐标均为正,可得关于的一元一次不等式,解不等式再将不等式的解集表示在数轴上即可.【详解】点在第一象限,,解得.将不等式的解集表示在数轴上,如图,故选C.【点睛】本题考查了象限内点的符号特征,解一元一次不等式,将不等式的解集表示在数轴上,根据题意列出不等式是解题的关键.4.B解析:B【分析】利用大正方形的面积减去小正方形的面积即可,解题时注意平方差公式的运用.【详解】解:长方形的面积为:(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5),故选B.【点睛】此题考查了平方差公式的几何背景,图形的剪拼,关键是根据题意列出式子,运用平方公式进行计算,要熟记公式.5.C解析:C【分析】分别先解两个不等式得到两个不等式的解集分别为<<,根据“同小取小”,可得从而可得答案.【详解】解:由①得:><由②得:<,不等式组的解集是:,,故选C.【点睛】本题考查的是已知不等式组的解集求不等式组中参数的取值范围,掌握不等式组的解集的确定是解题的关键.6.C解析:C【分析】根据平行公理、平行线的性质定理、垂线段的性质判断即可.【详解】解:过直线外一点有且只有一条直线与已知直线平行,①是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,②是假命题;两直线平行,内错角相等,③是假命题;垂线段最短,④是真命题,故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C解析:C【分析】根据题目提供的变化规律,找到点的坐标的变化规律并按此规律求得的值即可.【详解】解:P1(1,-1)=(0,2),P2(1,-1)=P1(P1)=P1(0,2)=(2,-2),P3(1,-1)=P1(P2)=P1(2,-2)=(0,4)=(0,22),P4(1,-1)=P1(P3)=P1(0,4)=(4,-4),P5(1,-1)=P1(P4)=P1(4,-4)=(0,8)=(0,23),P6(1,-1)=P1(P5)=P1(0,8)=(8,-8),…当n为奇数时,Pn(1,-1)=(0,),∴=(0,)=(0,21011),应该等于.故选C.【点睛】本题考查了数字的变化类问题,解题的关键是认真审题并从中找到正确的规律,并应用此规律解题.8.B解析:B【分析】利用面积的和差表示出S2-S1,根据图①与图②分别表示出矩形的面积,进而得到b(AD-AB)=12,从而求解.【详解】解:由,可得:S2-S1=9,由图①得:S矩形ABCD=S1+a2+b(AD-a),由图②得:S矩形ABCD=S2+a2+b(AB-a),∴S1+a2+b(AD-a)=S2+a2+b(AB-a),∴S2-S1=b(AD-AB),∵AD-AB=m,∴mb=12.故选:B.【点睛】本题考查了整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题9.【分析】根据单项式乘单项式的运算法则进行计算求解.【详解】解:=6x5y2,故答案为:6x5y2.【点睛】本题考查单项式乘单项式,掌握相关运算法则准确计算是解题关键.10.假【分析】两直线平行,同位角相等,如果没有前提条件,并不能确定同位角相等,由此可作出判断.【详解】解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.【点睛】本题考查了命题与定理的知识,属于基础题,同学们一定要注意一些定理成立的前提条件.11.A解析:【分析】根据题意可以求得正五边形的每个内角,从而可以求得旋转角,本题得以解决.【详解】解:如图:∵在正五边形ABCDE中,∴∠BAE==108°,∴∠BAF=180°﹣108°=72°,即使点B落在AE边所在的直线上,则旋转的角度是72°.故答案为:72.【点睛】本题考查旋转的性质、正多边形的内角与外角,解题的关键是明确题意,利用数形结合的思想,正多边形的内角与外角的相关知识解答.12.-2021【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=-1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【详解】解:将两式m2=n+2021,n2=m+2021相减,得m2-n2=n-m,(m+n)(m-n)=n-m,(因为m≠n,所以m-n≠0),m+n=-1,将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n

②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³-2mn=2021(m+n),m³+n³-2mn=2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m3-2mn+n3的降次处理是解题关键.13.【分析】根据方程的解满足方程,可得关于m的方程,根据解方程,可得答案.【详解】解:由题意,得3m+2-1=0,解得m=,故答案为.【点睛】本题考查了二元一次方程的解,利用方程的解满足方程得处关于m的方程是解题关键.14.1200【分析】可将曲路两旁的部分进行整合,可整合为一个长方形,进而求解即可.【详解】长方形的长为50m,宽为(25-1).余下草坪的面积为:50×(25-1)=1200m2.故答案为:1200.【点睛】注意运用平移的知识可以把几个图形拼成一个整体进行计算,后边的面积计算的时候注意以直代曲的一种思想.15.【分析】根据三角形三边关系进行求解即可;【详解】解:∵△ABC两边a=3,b=6,∴根据三角形的三边关系,得:6﹣3<c<3+6,即:3<c<9.故答案为:3<c<9.【点睛】本题解析:【分析】根据三角形三边关系进行求解即可;【详解】解:∵△ABC两边a=3,b=6,∴根据三角形的三边关系,得:6﹣3<c<3+6,即:3<c<9.故答案为:3<c<9.【点睛】本题主要考查了三角形三边关系,准确计算是解题的关键.16.35°【分析】根据旋转的性质,旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案.【详解】解:∵将△ABO绕点O按逆时针方向旋转55°后得到△A′B′O,∠AOB=20°,∴∠AOB解析:35°【分析】根据旋转的性质,旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案.【详解】解:∵将△ABO绕点O按逆时针方向旋转55°后得到△A′B′O,∠AOB=20°,∴∠AOB=∠A'OB'=20°,∠AOA'=55°,∴∠AOB'=∠AOA'﹣∠A'OB'=35°故答案为35°【点睛】本题考查了旋转的性质,解题的关键是明确旋转角的意义,对应边旋转后的夹角等于旋转角.17.(1)-18;(2);(3);(4)【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用平方计算,即可得到结果;(2)原式第一项利用幂的乘方计算法则计解析:(1)-18;(2);(3);(4)【解析】【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用平方计算,即可得到结果;(2)原式第一项利用幂的乘方计算法则计算,第二项利用同底数幂的乘法法则计算,最后一项利用同底数幂的除法运算法则计算,合并后即可得到结果;(3)原式利用平方差公式化简,再利用完全平方公式展开,即可得到结果;(4)原式利用积的乘方的逆运算,平方差公式,完全平方公式,即可得到结果.【详解】解:(1)原式;(2)原式;(3)原式,,;(4)原式,.故答案为(1)-18;(2);(3);(4)【点睛】本题考查整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,零指数幂,负整数指数幂,以及合并同类项法则,熟练掌握公式及法则是解题的关键.18.(1)3(x+y)2;(2)(x-1)2(x+1)2.【分析】(1)直接提取公因式3,再利用公式法分解因式进而得出答案;(2)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解解析:(1)3(x+y)2;(2)(x-1)2(x+1)2.【分析】(1)直接提取公因式3,再利用公式法分解因式进而得出答案;(2)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:(1)3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2;(2)原式=(x2+1-2x)(x2+1+2x)=(x-1)2(x+1)2.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(1);(2)【分析】(1)将方程①代入②,可求出,然后将代入①即可求解;(2)先将②×2-①可求出,然后将代入②即可求解.【详解】解:将方程①代入②,得:,解得:,将代入解析:(1);(2)【分析】(1)将方程①代入②,可求出,然后将代入①即可求解;(2)先将②×2-①可求出,然后将代入②即可求解.【详解】解:将方程①代入②,得:,解得:,将代入①,得:,∴原方程组的解为;(2)②×2-①,得:,解得:,将代入②,得:,解得:,∴原方程组的解为.【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法、代入消元法是解题的关键.20.-2<x≤3,数轴见解析【分析】先求出两个不等式的解集,再求其公共解.【详解】解:,解不等式①得,x>-2,解不等式②,5(x-1)≤2(2x-1),即5x-5≤4x-2,解得x≤3解析:-2<x≤3,数轴见解析【分析】先求出两个不等式的解集,再求其公共解.【详解】解:,解不等式①得,x>-2,解不等式②,5(x-1)≤2(2x-1),即5x-5≤4x-2,解得x≤3,在数轴上表示如下:所以,不等式组的解集为:-2<x≤3.【点睛】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题21.(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=解析:(1)详见解析;(2)58°【分析】(1)由平行线的判定定理进行证明,即可得到结论成立;(2)由角平分线性质和平行线的性质,求出∠2的度数,然后即可求出的度数.【详解】(1)证明:∵∠1=∠BDC∴AB//CD(同位角相等,两直线平行)∴∠2=∠ADC(两直线平行,内错角相等)∵∠2+∠3=180°∴∠ADC+∠3=180°(等量代换)∴AD//CE(同旁内角互补,两直线平行)(2)解:∵∠1=∠BDC,∠1=64°∴∠BDC=64°∵DA平分∠BDC∴∠ADC=∠BDC=32°(角平分线定义)∴∠2=∠ADC=32°(已证)又∵CE⊥AE∴∠AEC=90°(垂直定义)∵AD//CE(已证)∴∠DAF=∠AEC=90°(两直线平行,同位角相等)∴∠FAB=∠DAF-∠2=90°-32°=58°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,以及余角的计算,解题的关键是熟练掌握所学的知识进行解题.22.(1)、两种型号垃圾桶的单价是500元和550元;(2)购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【分解析:(1)、两种型号垃圾桶的单价是500元和550元;(2)购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【分析】(1)设、两种型号垃圾桶的单价分别为元,元,由题意列方程,求出的值即为种型号垃圾桶的单价,再由求出种型号垃圾桶的单价.(2)设购买A种型号垃圾桶个,则由题意,列式,解出的范围,分类讨论即可.【详解】(1)设、两种型号垃圾桶的单价分别为元,元,由题意列方程:解得:经检验知:是原方程的解,符合题意∴即、两种型号垃圾桶的单价是500元和550元.(2)设购买A种型号垃圾桶为个,则:解得:,又∵单位需要购买分类垃圾桶6个∵且为整数,∴所以购买A种型号垃圾桶为4个,B种型号垃圾桶为个;A种型号垃圾桶为5个,B种型号垃圾桶为个;A种型号垃圾桶为6个,B种型号垃圾桶为.综上所述,共有三种购买方式,即购买A种型号垃圾桶为4个,B种型号垃圾桶为2个;A种型号垃圾桶为5个,B种型号垃圾桶为1个;A种型号垃圾桶为6个,B种型号垃圾桶为0个.【点睛】本题考查分式方程的应用,以及一元一次不等式的应用,根据相关知识点列出关系式是解题关键.23.(1);(2);(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解解析:(1);(2);(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解;(3)把am和bn当成一个整体利用已知条件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,继而可求出a、b的值.【详解】解:(1)两个方程相加得,∴,把代入得,∴方程组的解为:;故答案是:;(2)设m+5=x,n+3=y,则原方程组可化为,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程组与有相同的解可得方程组,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.24.【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论