难点详解华东师大版7年级下册期末试卷附答案详解(轻巧夺冠)_第1页
难点详解华东师大版7年级下册期末试卷附答案详解(轻巧夺冠)_第2页
难点详解华东师大版7年级下册期末试卷附答案详解(轻巧夺冠)_第3页
难点详解华东师大版7年级下册期末试卷附答案详解(轻巧夺冠)_第4页
难点详解华东师大版7年级下册期末试卷附答案详解(轻巧夺冠)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华东师大版7年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、关于x的一元一次方程的解是,则的值是()A.4 B.5 C.6 D.72、下列方程组中,属于二元一次方程组的是()A. B.C. D.3、一个多边形的每个内角均为150°,则这个多边形是()A.九边形 B.十边形 C.十一边形 D.十二边形4、一只纸箱质量为,放入一些苹果后,纸箱和苹果的总质量不能超过.若每个苹果的质量为,则这只纸箱内能装苹果()A.最多27个 B.最少27个 C.最多26个 D.最少26个5、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于()A.19° B.20° C.24° D.25°6、不等式的最小整数解是()A. B.3 C.4 D.57、如图,已知,,,则的度数为()A.155° B.125° C.135° D.145°8、小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45° B.15°或45°或90°C.45°或90°或135° D.15°或45°或90°或135°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和,即;步骤2:计算前12位数字中奇数位数字的和,即;步骤3:计算与的和,即;步骤4:取大于或等于且为10的整数倍的最小数,即中;步骤5:计算与的差就是校验码X,即.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.2、一般地,二元一次方程组的两个方程的____,叫做二元一次方程组的解.3、将方程x+3y=8变形为用含y的式子表示x,那么x=_______.4、如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?解:设产品重x吨,原料重y吨.由题意可列方程组解这个方程组,得___________因为毛利润-销售款-原料费-运输费所以这批产品的销售款比原料费与运输的和多___________元.5、如图,∠MAN=100°,点B,C是射线AM,AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小为__________度.6、某测试共有20道题,每答对一道得5分,每答错一道题扣1分,若小明得分要超过90分,设小明答对x道题,可列不等式_____.7、新春佳节,小明和小颖去看望李老师,李老师用一种特殊的方式给他们分糖,李老师先东给小明1块,然后把糖盒里所剩糖的给小明,再拿给小颖2块,又把糖盒里所剩糖的给小颖.这样两人所得的糖块数相同.则李老师的糖盒中原来有_________块糖.三、解答题(7小题,每小题10分,共计70分)1、如图,是数轴的原点,、是数轴上的两个点,点对应的数是,点对应的数是,是线段上一点,满足.(1)求点对应的数;(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,当点到达点后停留秒钟,然后继续按原速沿数轴向右匀速运动到点后停止.在点从点出发的同时,动点从点出发,以每秒个单位长度的速度沿数轴匀速向左运动,一直运动到点后停止.设点的运动时间为秒.①当时,求的值;②在点,出发的同时,点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,当点与点相遇后,点立即掉头按原速沿数轴向右匀速运动,当点与点相遇后,点又立即掉头按原速沿数轴向左匀速运动到点后停止.当时,请直接写出的值.2、如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们定义这个不等式为绝对值不等式,小明在课外小组活动时探究发现:①|x|>a(a>0)的解集是x>a或x<﹣a;②|x|<a(a>0)的解集是﹣a<x<a.根据小明的发现,解决下列问题:(1)请直接写出下列绝对值不等式的解集;①|x|>3的解集是②|x|<的解集是.(2)求绝对值不等式2|x﹣1|+1>9的解集.3、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:价格\类型A型B型进价(元/个)3565标价(元/个)50100(1)这两种玻璃保温杯各购进多少个?(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?4、如图1,正方形和长方形的周长相等,且各有一条边在数轴上,点对应的数分别是.正方形以每秒2个单位长度的速度向右移动,同时长方形以每秒1个单位长度的速度向左移动.设正方形和长方形重叠部分的面积为S,移动时间为t.(1)长方形的面积是______.(2)当S是长方形面积的一半时,求t的值.(3)如图2,当正方形和长方形运动到点B和点F重合时,停止运动,将正方形绕点B顺时针旋转,旋转角度为,点分别在线段、线段的延长线上,平分,判断和之间的数量关系,用等式表示,并说明理由.5、某学校初二年级党支部组织“品读经典,锤炼党性”活动,需要购买不同类型的书籍给党员老师阅读.已知购买1本类书和2本类书共需82元;购买2本类书和1本类书共需74元.(1)求,两类书的单价;(2)学校准备购买,两类书共34本,且类书的数量不高于类书的数量.购买书籍的花费不得高于900元,则该学校有哪几种购买方案?6、(1)在图1中,已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把AD⊥BC于D改为F是AE上一点,FD⊥BC于D,试用x、y表示∠DFE=:(3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y表示∠P=.7、解不等式组:,并写出该不等式组的整数解.-参考答案-一、单选题1、B【解析】【分析】由关于x的一元一次方程,可得可求解再把方程的解代入方程求解从而可得答案.【详解】解:由关于x的一元一次方程可得:解得:所以方程为:,又因为方程的解是,所以解得:所以故选:B【点睛】本题考查的是一元一次方程的解,一元一次方程的定义,解一元一次方程,掌握“一元一次方程的定义与方程的解的含义”是解本题的关键.2、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;B、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;C、该方程组符合二元一次方程组的定义,故本选项符合题意;D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;故选:C.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.3、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.4、C【解析】【分析】设这只纸箱内能装苹果x个,则根据不等关系:纸箱质量+所装苹果质量≤9,可建立不等式,解不等式即可,从而可得结果.【详解】设这只纸箱内能装苹果x个,由题意可得:1+0.3x≤9解不等式得:由于x只能取正整数所以x为不超过26的正整数时,均满足纸箱和苹果的总质量不能超过即这只纸箱内最多能装苹果26个故选:C【点睛】本题考查了一元一次不等式的应用,根据题意找出不等关系并列出不等式是关键,但要注意所求量为整数.5、B【解析】【分析】根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.【详解】∵BD的垂直平分线交AB于点E,∴∴∴∵将沿AD折叠,点C恰好与点E重合,∴,,∵∴∵∴∴故选:B.【点睛】本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.6、C【解析】【分析】先求出不等式解集,即可求解.【详解】解:解得:所以不等式的最小整数解是4.故选:C.【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.7、B【解析】【分析】根据三角形外角的性质得出,再求即可.【详解】解:∵,∴,∵,∴,∴;故选:B.【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解.【详解】解:设旋转的度数为α,若DE∥AB,则∠E=∠ABE=90°,∴α=90°-30°-45°=15°,若BE∥AC,则∠ABE=180°-∠A=120°,∴α=120°-30°-45°=45°,若BD∥AC,则∠ACB=∠CBD=90°,∴α=90°,当点C,点B,点E共线时,∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°-45°=135°,综上三角板DEF旋转的度数可能是15°或45°或90°或135°.故选:D【点睛】本题考查了旋转的性质,平行线的性质,利用分类讨论思想解决问题是本题的关键.二、填空题1、4【解析】【分析】设被污染的两个数字中左边的数字为x,则右边的数为5-x,然后根据题中所给算法可进行求解.【详解】解:设被污染的两个数字中左边的数字为x,则右边的数为5-x,由题意得:,,,∵d为10的整数倍,且,∴或110,∵由图可知校验码为9,∴当时,则有,解得:,则有右边的数为5-1=4;当时,则有,解得:,不符合题意,舍去;∴被污染的两个数字中右边的数字是4;故答案为4.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.2、公共解【解析】略3、8﹣3y【解析】【分析】利用等式的性质求解.【详解】解:x+3y=8,x=8﹣3y.故答案为:8﹣3y【点睛】本题主要考查了二元一次方程的解法,熟练掌握二元一次方程组的解法——加减消元法,代入消元法是解题的关键.4、14【解析】略5、50【解析】【分析】根据角平分线的定义和三角形的外角性质解答即可.【详解】解:∵CD平分∠ACB,BE平分∠MBC,∴∠BCD=∠ACB,∠EBC=∠MBC,∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,∴∠BDC=∠EBC-∠BCD=∠MBC-∠ACB=∠MAN=50°,故答案为:50.【点睛】本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.6、5x−(20−x)>90【解析】【分析】设小明答对x道题,则答错(20−x)道题,根据小明的得分=5×答对的题目数−1×答错的题目数结合小明得分要超过90分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则答错(20−x)道题,依题意,得:5x−(20−x)>90,故答案为:5x−(20−x)>90.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.7、25【解析】【分析】首先假设出李老师的糖盒中原有x块糖,这样分别表示出两人所得糖的数量,列出方程求解.【详解】解:设李老师的糖盒中原有x块糖,由题意得,1+(x-1)=2+[x-3-(x-1)],x=25.答:李老师的糖盒中原有25块糖.故答案为:25.【点睛】此题主要考查了一元一次方程的应用,题目比较典型,关键根据两人所得的糖块数相同列出方程.三、解答题1、(1);(2)①,;②或或5.【解析】【分析】(1)设点C对应的数为c,先求出AC=c-(-1)=c+1,BC=8-c,根据,变形,即,解方程即可;(2)①点M、N在相遇前,先求出点M表示的数:-1+2t,点N表示的数为:8-t,根据,列方程,点M、N相遇后,求出点M过点C,点M表示的数为-1+2(t-2)=-5+2t,根据,列方程,解方程即可;②点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,先求点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,确定点P与M,N位置,当时,列方程,当点P与点N相遇时,3(t-1)+t-1=7-1解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,根据当时,列方程5.5-3(t-2.5)-4=2{5.5-(t-2.5)-[5.5-3(t-2.5)]},点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,列方程,解方程即可.(1)解:设点C对应的数为c,∴AC=c-(-1)=c+1,BC=8-c,∵,∴,即,解得;(2)解:①点M、N在相遇前,点M表示的数:-1+2t,点N表示的数为:8-t,∵,∴,解得,点M、N相遇后,点M过点C,点M表示的数为-1+2(t-2)=-5+2t,∵,∴,解得,∴MN=4时,或;②点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,点M与点P在1位置,点N在7位置,点P掉头,PM=3(t-1)-2(t-1),PN=8-t-1-3(t-1),当时,,解得,当点P与点N相遇时,3(t-1)+t-1=7-1,解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,当时,5.5-3(t-2.5)-4=2{5.5-(t-2.5)-[5.5-3(t-2.5)]},解得;点P与点M再次相遇时,,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,PM=2(t-2)-1-(-1)=2t-2,PN=8-t-(-1)=9-t,即,解得;综合得当时,的值为或或5.【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位置,根据等量关系列方程是解题关键.2、(1)①x>3或x<−3;②−<x<(2)x>5或x<−3.【解析】【分析】(1)根据题意即可得;(2)将2|x−1|的数字因数2化为1后,根据以上结论即可得.(1)解:①由探究发现,|x|>3的解集是x>3或x<−3;故答案为:x>3或x<−3;②由探究发现,|x|<的解集是−<x<.故答案为:−<x<.(2)解:2|x−1|+1>9,2|x−1|>9−1,2|x−1|>8,|x−1|>4,∴|x−1>4的解集可表示为x−1>4或x−1<−4,∴2|x−1|+1>9的解集为:x>5或x<−3.【点睛】本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.3、(1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;(2)该商店共获利395元【解析】【分析】(1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;(2)根据单件利润=售价-进价和总利润=单件利润×销量求解-损坏的成本即可.(1)解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,根据题意,得:35x+65(80-x)=3700,解得:x=50,80-x=80-50=30(个),答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;(2)解:根据题意,总利润为(50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)=240+290=395(元),答:该商店共获利395元.【点睛】本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.4、(1)60(2)t的值为或(3)∠ABP=∠CBN,理由见解析.【解析】【分析】(1)由数轴上两点间的距离求出BC=8,FG=6,进而可得正方形ABCD的周长为32,再根据正方形ABCD和长方形EFGH周长相等,即可求EF长,进而求其面积;(2)分情况讨论:①当点F在正方形BC边上时;②当点F在正方形BC边左边时两种情况即可;(3)由角平分线定义得∠EBP=∠CBE,由平角定义得∠ABE=180º-∠ABC-∠CBN=90º-∠CBN,根据角的和差即可得到∠ABP=∠CBN(1)解:∵四边形ABCD是正方形,BC=-5-(-13)=8,∴正方形ABCD的周长为32,∵四边形EFGH是长方形,FG=8-2=6,∴长方形EFGH的周长为2(EF+FG)=2(EF+6),∵正方形ABCD和长方形EFGH周长相等,∴2(EF+6)=32,∴EF=10,∴S长方形EFGH=10×6=60,故答案为:60(2)解:当点F在正方形BC边上时,如图:正方形ABCD以每秒2个单位长度的速度向右移动,同时长方形EFGH以每秒1个单位长度的速度向左移动,移动时间为t,∴CC1=2t,FF1=t,CF=2-(-5)=7,∴F1C1=CC1+FF1-CF=2t+t-7=3t-7,∵重叠部分的面积=F1C1·C1D1=×60=30,且C1D1=8,∴F1C1=,∴3t-7=,∴t=;当点F在正方形BC边左边时,如图:正方形ABCD以每秒2个单位长度的速度向右移动,同时长方形EFGH以每秒1个单位长度的速度向左移动,移动时间为t,∴BB2=2t,GG2=t,BG=8-(-13)=21,∴B2G2=BG-BB2-GG2=21-3t,∵重叠部分的面积=B2G2·A2B2=30,且A2B2=8,∴B2G2=,∴21-3t=,∴t=,故t的值为或(3)∵平分,∴∠EBP=∠CBE,∵∠ABE=180º-∠ABC-∠CBN=90º-∠CBN,∴∠ABP=∠EBP-∠ABE=∠CBE-90º+∠CBN=(180º-∠CBN)-90º+∠CBN=∠CBN,即∠ABP=∠CBN【点睛】本题考查了一元一次方程的应用、数轴等知识点,体现了分类讨论思想,找准等量关系,正确列出一元一次方程是解题的关键.也考查了角平分线的定义等知识.5、(1)类书的单价为22元,类书的单价为30元(2)学校共有3种购买方案:方案1:购买类书15本,类书19本;方案2:购买类书16本,类书18本;方案3:购买类书17本,类书17本.【解析】【分析】(1)设A类书的单价为x元,B类书的单价为y元,根据“购买1本A类书和2本B类书共需82元;购买2本A类书和1本B类书共需74元”,即可得出关于x,y的二元一次方程组,解之即可得出A,B两类书的单价;(2)设购买A类书m本,则购买B类书(34-m)本,根据“购买A类书的数量不高于B类书的数量,购买书籍的花费不得高于900元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案.(1)解:设类书的单价为元,类书的单价为元,依题意得:,解得:.答:类书的单价为22元,类书的单价为30元.(2)解:设购买类书本,则购买类书本,依题意得:,解得:.又∵为正整数,∴可以为15,16,17,∴该学校共有3种购买方案,分别如下所示:方案1:购买类书15本,类书19本;方案2:购买类书16本,类书18本;方案3:购买类书17本,类书17本.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.6、(1)15°;(2);(3)结论应成立.(4).【解析】【分析】(1)根据三角形内角和公式得出∠BAC=180°-∠B-∠C=180°-70°-40°=70°,根据AE平分∠BAC,得出∠BAE=,利用AD⊥BC,得出∠BAD=90°-∠B=90°-70°=20°,然后用角的差计算即可;(2)根据三角形内角和得出∠BAC=180°-∠B-∠C=180°-x-y,根据AE平分∠BAC,得出∠EAC=,利用FD⊥BC,可得∠DFE+∠FED=90°,根据∠FED是△AEC的外角,可求∠FED=∠C+∠EAC=,利用余角求解即可;(3)结论应成立.过点A作AG⊥BC于G,根据三角形内角和得出∠BAC=180°-∠B-∠C=180°-x-y,根据AE平分∠BAC,得出∠BAE=,根据AG⊥BC,得出∠BAG=90°-∠B=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论