难点解析-四川泸县四中7年级数学下册第四章三角形综合训练试卷(含答案解析)_第1页
难点解析-四川泸县四中7年级数学下册第四章三角形综合训练试卷(含答案解析)_第2页
难点解析-四川泸县四中7年级数学下册第四章三角形综合训练试卷(含答案解析)_第3页
难点解析-四川泸县四中7年级数学下册第四章三角形综合训练试卷(含答案解析)_第4页
难点解析-四川泸县四中7年级数学下册第四章三角形综合训练试卷(含答案解析)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川泸县四中7年级数学下册第四章三角形综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10° B.15° C.20° D.25°2、下列长度的各组线段中,能组成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,53、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是()A. B.C. D.4、下列长度的三条线段能组成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,75、以长为15cm,12cm,8cm、5cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个 B.2个 C.3个 D.4个6、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.67、如图,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.条件中任选一个,可使△ABC≌△BAD.可选的条件个数为()A.1 B.2 C.3. D.48、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是()A. B. C. D.9、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,710、如图,AB∥CD,∠E+∠F=85°,则∠A+∠C=()A.85° B.105°C.115° D.95°第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,正三角形△ABC和△CDE,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有_____.(填序号)2、如图,AD是BC边上的中线,AB=5cm,AD=4cm,△ABD的周长是12cm,则BC的长是____cm.3、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).4、如图,为等腰的高,其中分别为线段上的动点,且,当取最小值时,的度数为_____.5、如图,ABDC,ADBC,AC与BD交于点O,EF经过点O,与AD、BC分别交于点E和F,则图中共有___对全等三角形.6、如图,某同学把一块三角形的玻璃打碎成了三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带____(填序号)去配,这样做的科学依据是_______.7、在中,,则的取值范围是_______.8、如图,△PBC的面积为5cm2,BP平分∠ABC,AP⊥BP于点P,则△ABC的面积为_____cm2.9、如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.10、如图,点F,A,D,C在同一条直线上,,,,则AC等于_____.三、解答题(6小题,每小题10分,共计60分)1、证明“全等三角形的对应角的平分线相等”.要求:将已有图形根据题意补充完整,并据此写出己知、求证和证明过程.2、如图,BM、CN都是∆ABC的高,且BP﹦AC,CQ﹦AB,请探究AP与AQ的数量关系,并说明理由.3、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.4、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:BE=CD;(2)F为AD上一点,DF=CD,连接BF,若AD=5,BE=2,求△BDG的面积5、如图△ABC中,已知∠A=60°,角平分线BD、CE交于点O.(1)求∠BOC的度数;(2)判断线段BE、CD、BC长度之间有怎样的数量关系,请说明理由.6、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,,交于点Q.求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.-参考答案-一、单选题1、B【分析】根据三角板各角度数和三角形的外角性质可求得∠BFE,再根据对顶角相等求解即可.【详解】解:由题意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故选:B.【点睛】本题考查三角板各角的度数、三角形的外角性质、对顶角相等,熟知三角板各角的度数,掌握三角形的外角性质是解答的关键.2、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】∵1+2=3,∴A不能构成三角形;∵3+2=5,∴B不能构成三角形;∵3+4<8,∴C不能构成三角形;∵∵3+4>5,∴D能构成三角形;故选D.【点睛】本题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键.3、D【分析】根据全等三角形的性质求解即可.【详解】解:∵≌,和是对应角,和是对应边,∴,,∴,∴选项A、B、C错误,D正确,故选:D.【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.4、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为,所以不能组成三角形,故本选项不符合题意;B、因为,所以不能组成三角形,故本选项不符合题意;C、因为,所以能组成三角形,故本选项符合题意;D、因为,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.5、C【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先可以组合为15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根据三角形的三边关系,发现其中的12cm,8cm、5cm不符合,则可以画出的三角形有3个.故选:C.【点睛】本题考查了三角形的三边关系:即任意两边之和大于第三边,任意两边之差小于第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.6、A【分析】利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.【详解】解:由题意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故选:A.【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.7、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,则可根据“SAS”判断△ABC≌△BAD;若添加BC=AD,则可利用“HL”证明Rt△ABC≌Rt△BAD,若添加∠C=∠D,则可利用“AAS”证明△ABC≌△BAD;若添加OA=OB,可先根据“ASA”证明△AOC≌△BOD得∠C=∠D,则可利用“AAS”证明△ABC≌△BAD.【详解】解:在△ABC和△BAD中,∴△ABC≌△BAD故选AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均为直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故选BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故选∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故选OA=OB可使△ABC≌△BAD.∴可选的条件个数有4个故选:D【点睛】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.8、D【分析】设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.【详解】解:设第三根木棒长为x厘米,由题意得:8﹣5<x<8+5,即3<x<13,故选:D.【点睛】此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.9、C【分析】根据组成三角形的三边关系依次判断即可.【详解】A、3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.10、D【分析】设交于点,过点作,根据平行线的性质可得,根据三角形的外角性质可得,进而即可求得【详解】解:设交于点,过点作,如图,∵∴∠E+∠F=85°故选D【点睛】本题考查了平行线的性质,三角形的外角性质,平角的定义,掌握三角形的外角性质是解题的关键.二、填空题1、①②③⑤【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据③△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.2、6【分析】根据AD是BC边上的中线,得出为的中点,可得,根据条件可求出.【详解】解:AD是BC边上的中线,为的中点,,,△ABD的周长是12cm,,,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出为的中点.3、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.4、【分析】作,且,连接交于M,连接,证明,得到,,当F为与的交点时,即可求出最小值;【详解】解:如图1,作,且,连接交于M,连接,是等腰三角形,,,,,,,,在与中,,,∴当F为与的交点时,如图2,的值最小,此时,,故答案为:.【点睛】本题主要考查了全等三角形的判定与性质,准确计算是解题的关键.5、6【分析】根据平行线的性质得出∠DAC=∠BCA,∠DCA=∠BAC,根据全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根据全等三角形的性质得出AD=CB,AB=CD根据全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根据全等三角形的性质定理得出AO=CO,BO=DO,根据全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【详解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【点睛】本题考查了全等三角形的判定定理和性质定理,平行线的性质等知识点,能熟记全等三角形的判定定理和性质定理是解此题的关键,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS两直角三角形全等还有HL等,②全等三角形的对应边相等,对应角相等.6、③ASA【分析】由题意已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法进行分析即可.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;ASA.【点睛】本题主要考查全等三角形的判定方法的实际应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.7、【分析】由构成三角形的条件计算即可.【详解】∵中∴∴.故答案为:.【点睛】本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、10【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S阴影=10(cm2),故答案为:10.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.9、【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,则有S△AB'C=AC•B′H即可求得答案.【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC•B′H=×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB≌△B'HA是解决问题的关键.10、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,,求出,则.【详解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案为:6.5.【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.三、解答题1、见解析.【分析】根据图形和命题写出已知求证,根据全等三角形的性质得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根据角平分线的定义得出∠BAD=∠B′A′D′,根据全等三角形的判定得出△BAD≌△B′A′D′,再根据全等三角形的性质得出答案即可.【详解】解:如图,已知:△ABC≌△A′B′C′,AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,求证:AD=A′D′,证明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【点睛】本题考查了全等三角形的判定定理和性质定理,能求出△BAD≌△B′A′D′是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,两直角三角形全等还有HL,全等三角形的对应边相等.2、AP=AQ,理由见详解【分析】由题意易得∠BNP=∠CMP=90°,则有∠ABP+∠BPN=∠QCA+∠MPC=90°,然后可得∠ABP=∠QCA,进而可证△ABP≌△QCA,最后问题可求解.【详解】解:AP=AQ,理由如下:∵BM、CN都是∆ABC的高,∴∠BNP=∠CMP=90°,∴∠ABP+∠BPN=∠QCA+∠MPC=90°,∵∠BPN=∠MPC,∴∠ABP=∠QCA,在△ABP和△QCA中,,∴△ABP≌△QCA(SAS),∴AP=AQ.【点睛】本题主要考查三角形的高线、直角三角形的性质及全等三角形的性质与判定,熟练掌握三角形的高线、直角三角形的性质及全等三角形的性质与判定是解题的关键.3、见解析【分析】根据平行线的性质可得,利用全等三角形的判定定理即可证明.【详解】证明:∵,∴.在和中,,∴,∴.【点睛】题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键.4、(1)见解析;(2)【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证明△BCE≌△CAD,则可得出结论;(2)证明△FDG≌△BEG(AAS),由全等三角形的性质得出EG=DG,求出DG的长,则可得出答案.【详解】解:(1)证明:∵∠ACB=90°,BE⊥CE,AD⊥CE∴∠ECB+∠ACD=90°,∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)证明:∵△ACD≌△CBE,∴AD=CE,CD=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论