




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如果点P(﹣5,b)在第二象限,那么b的取值范围是()A.b≥0 B.b≤0 C.b<0 D.b>02、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为()A. B. C. D.3、关于一次函数,下列结论不正确的是()A.图象与直线平行B.图象与轴的交点坐标是C.随自变量的增大而减小D.图象经过第二、三、四象限4、已知点和都在反比例函数的图象上,如果,那么与的大小关系是()A. B. C. D.无法判断5、在函数中,自变量x的取值范围是()A. B. C. D.6、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为()A. B.C. D.7、初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体有馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之向的距离y(米)与小博出发的时间x(分钟)之间的关系如图所示,对于以下说法错误的是().A.小博的迹度为180米/分B.爸爸的速度为270米/分C.点C的坐标是D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米8、若分式有意义,则x满足的条件是()A.x=0 B. C.x=5 D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在平面直角坐标系xOy中,P为函数图象上一点,过点P分别作x轴、y轴的垂线,垂足分别为M,N.若矩形PMON的面积为3,则m的值为______.2、如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为______.3、如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.4、方差:各数据与它们的平均数的差的平方的_______________.5、如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将ADE绕点A顺时针旋转得到,使得点D的对应点落在AE上,如果的延长线恰好经过点B,那么DE的长度等于_____.6、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.7、已知f(x)=,那么f()=___.三、解答题(7小题,每小题10分,共计70分)1、如图,直线l1的函数解析式为y=﹣x+1,且l1与x轴交于点A,直线l2经过点B,D,直线l1,l2交于点C.(1)求直线l2的函数解析式;(2)求△ABC的面积.2、为了纪念中国人民志愿军抗美援朝71周年,近两年涌现了很多相关题材的电影作品,《长津湖》和《金刚川》正是其中优秀的代表.为了解学生对这两部作品的评价,某调查小组从该校观看过这两部电影的学生中各随机抽取了20名学生对这两部作品分别进行评分(满分10分),并通过整理和分析,给出了部分信息.《长津湖》得分情况:7,8,7,10,7,6,9,9,10,10,8,9,8,6,6,10,9,7,9,9抽取的学生对两部作品分别打分的平均数,众数和中位数平均数众数中位数《长津湖》《金刚川》根据以上信息,解答下列问题:(1)直接写出上述图表中的,,的值;(2)根据上述数据,你认为该校观看过这两部作品的学生对哪部作品评价更高?请说明理由(写出一条理由即可);(3)若该校有2000名学生观看过这两部影片,若他们都对这两部作品进行评分,你认为这两部作品一共可得到多少个满分?3、某小区有500户居民,从中随机抽取了100户,调查了他们11月的用水量(单位:吨).整理抽取的这100户的月用水量,其中小于等于15吨的户数有60户.按月用水量(单位:吨)0~5,5~10,10~15,15~20,20~25,25~30,30~35进行分组,绘制了频数分布直方图.(1)直接写出直方图中x,y的值,以及这100户居民月用水量的中位数所在的组别;(2)把图中每组用水量的值用该组的中间值(如0~5的中间值为2.5)来代替,估计该小区11月的用水总量.说明:0~5是指大于等于0且小于等于5,5~10是指大于5且小于等于10,以此类推,30~35是指大于30且小于等于35)4、作图题:如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.(1)画出关于x轴对称的图形并写出顶点,的坐标;(2)已知P为y轴上一点,若与的面积相等,请直接与出点P的坐标.5、先化简,再求值,其中x=-2,y=1.6、某公司20名销售人员某月销售某种商品的数量如下(单位:件):月销售量2000700600400300200人数235721(1)月销售量的中位数为__________件,众数为__________件;(2)求该公司销售人员月销售量的平均数;(3)假设你是销售部负责人,你认为应怎样制定每位销售人员的月销售量指标?说明理由.7、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.-参考答案-一、单选题1、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.3、D【解析】【分析】根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.【详解】解:A、函数的图象与直线平行,故本选项说法正确;B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;C、,所以随自变量的增大而减小,故本选项说法正确;D、,,函数图象经过第一、二、四象限,故本选项说法不正确;故选:D.【点睛】本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.4、D【解析】【分析】分两种情况讨论:先画出反比例函数的图象,再在图象上描出点和,从而可得答案.【详解】解:如图,当时,则同理:当时,如图,当时,则故的大小无法判断,故选D【点睛】本题考查的是反比例函数的图象与性质,利用“数形结合的方法比较函数值的大小”是解本题的关键.5、C【解析】【分析】由题意知,求解即可.【详解】解:由题意知∴故选C.【点睛】本题考查了分式有意义的条件与解一元一次不等式.解题的关键在于确定分式有意义的条件.6、C【解析】【分析】由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.【详解】解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,∴每个B型包装箱可以装书(x+15)本.依题意得:故选:C.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.7、C【解析】【分析】根据小博出发5分钟后行驶900米,得出小博的迹度为=180米/分,可判断A;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,根据两者行驶路程相等列方程15×180=10x,得出x=270米/分,可判断B;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,可判断C;设爸爸出发时间为t分钟时,两者之间距离为800米,根据追及与相背而行问题列方程(5+t)180-270t=800或(180+270)×(t-10)=800,解方程可判断D.【详解】解:∵小博出发5分钟后行驶900米,∴小博的迹度为=180米/分,故选项A正确;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,15×180=10x,解得:x=270米/分,∴故选项B正确;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分钟,行驶距离为25×180=4500米,∴点C(25,4500),故选项C不正确,设爸爸出发时间为t分钟时,两者之间距离为800米,(5+t)180-270t=800或(180+270)×(t-10)=800,解得:分钟或分钟,当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,故选项D正确.故选C.【点睛】本题考查从函数图像获取信息和处理,掌握从函数图像获取信息和处理,关键掌握图像中的横纵轴于折叠表示的意义.8、D【解析】【分析】根据分母不为零,分式有意义进行选择即可.【详解】解:当分母x−5≠0,即x≠5时,分式有意义,故选:D.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.二、填空题1、3【解析】【分析】根据反比例函数的解析式是,设点,根据已知得出,即,求出即可.【详解】解:设反比例函数的解析式是,设点是反比例函数图象上一点,矩形的面积为3,,即,故答案为:3.【点睛】本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.2、(0,)【解析】【分析】先根据题意得出OA=6,OC=2,再根据勾股定理计算即可.【详解】解:由题意可知:AC=AB,∵A(6,0),C(-2,0)∴OA=6,OC=2,∴AC=AB=8,在Rt△OAB中,,∴B(0,).故答案为:(0,).【点睛】本题考查勾股定理、坐标与图形、熟练掌握勾股定理是解题的关键.3、(,0)【解析】【分析】利用勾股定理求出OB的长度,同圆的半径相等即可求解.【详解】由题意可得:OP=OB,OC=AB=2,BC=OA=1,∵OB===,∴OP=,∴点P的坐标为(,0).故答案为:(,0).【点睛】本题考查勾股定理的应用,在直角三角形中,两条直角边的平方和,等于斜边的平方.4、和的平均数【解析】略5、【解析】【分析】如图,连接BE、BE′,根据矩形的性质和旋转变换的性质可得:AD′=AD=3,∠AD′E=∠D=90°,利用勾股定理可得BD′=4,再运用等面积法可得:AB•AD=AE•BD′,求出AE=,再运用勾股定理即可求得答案.【详解】解:如图,连接BE、BE′,∵矩形ABCD中,AD=3,AB=5,∴∠D=90°,由旋转知,△AD′E′≌△ADE,∴AD′=AD=3,∠AD′E=∠D=90°,∵D′E′的延长线恰好经过点B,∴∠AD′B=90°,在Rt△ABD′中,BD′===4,∵S△ABE=AB•AD=AE•BD′,∴AE===,在Rt△ADE中,DE===,故答案为:.【点睛】本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.6、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.7、####【解析】【分析】把代入函数解析式进行计算即可.【详解】解:f(x)=,故答案为:【点睛】本题考查的是已知自变量的值求解函数值,理解的含义是解本题的关键.三、解答题1、(1)y=x﹣3(2)【解析】【分析】(1)设直线l2的解析式为,将点B、点D两个点代入求解即可确定函数解析式;(2)当y=0时,代入直线解析式确定点A的坐标,即可得出的底边长,然后联立两个函数解析式得出交点坐标,点C的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l2的解析式为,由直线l2经过点,可得:,解得:,∴直线l2的解析式为;(2)当y=0时,代入直线解析式可得:,解得,∴,∴,联立,解得:,∴,∴.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.2、(1)a=15,b=8.5,c=8;(2)《长津湖》,理由见解析;(3)385.【解析】【分析】(1)根据《金刚川》调查得分为“10分”所占的百分比,确定a的值,根据中位数、众数的意义可求出b、c的值,(2)通过平均数、中位数、众数的比较得出答案;(3)求出两部作品满分人数所占的百分比即可求.(1)解:《金刚川》调查得分为“10分”所占的百分比为:1﹣10%﹣20%﹣20%﹣126360=15%,即a=15《长津湖》调查得分从小到大排列,6,6,6,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,10,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5分,即b=8.5《金刚川》调查得分出现次数最多的是8分,共出现20×126360=7(次),因此众数是8分,即c答:a=15,b=8.5,c=8;(2)《长津湖》,理由为:《长津湖》调查得分的平均数、中位数、众数均比《金刚川》高;(3)《长津湖》满分有4个,《金刚川》满分占15%,所以,两部作品一共可得到满分为:1100×(420+15%)=385答:这两部作品一共可得到385个满分.【点睛】本题考查条形统计图,频数分布表,中位数、众数、平均数,理解中位数、众数、平均数的意义是解决问题的前提,掌握中位数、众数、平均数的计算方法是正确解答的关键.3、(1),这100户居民月用水量的中位数所在的组别为(2)估计该小区11月的用水总量为7325吨【解析】【分析】(1)根据“小于等于15吨的户数有60户”以及0~5,10~15的人数可求出的值;再利用100减去其他组的人数可得的值;然后根据中位数的定义即可得;(2)利用随机抽取的100户的11月用水量的平均值乘以500即可得.(1)解:由题意得:,,将这组数据按从小到大进行排序后,第50和第51个数的平均数为中位数,因为,,所以第50和第51个数所在的组别是,故这100户居民月用水量的中位数所在的组别为;(2)解:的中间值分别为,则(吨),答:估计该小区11月的用水总量为7325吨.【点睛】本题考查了频数分布直方图、中位数、平均数,读懂频数分布直方图是解题关键.4、(1)作图见解析,A1(0,-1),C1(4,-4)(2)(0,6)或(0,-4)【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)设P(0,m),构建方程求解即可.(1)解:作出△ABC关于x轴对称的△A1B1C1如图所示.△A1B1C1顶点坐标为:A1(0,-1),C1(4,-4).(2)设P(0,m),由题意,,解得m=6或-4,∴点P的坐标为(0,6)或(0,-4).【点睛】本题考查作图-轴对称变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、;-2.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式当,时,原式.【点睛】本题考查的是分式的化简求值,掌握分式的加减混合运算法则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车智能外饰生产线项目建筑工程方案
- 2025年自考物理模拟试卷及答案
- 河北2025自考行政管理中国近现代史纲要客观题专练
- 热力设备安装与调试技术方案
- 粉煤灰处置及综合利用项目风险评估报告
- 城市更新中的水资源管理与节约策略
- 六年级上册心理健康教育教案- 7在合作中成长 | 辽大版
- 沉浸式关系构建-洞察与解读
- 4.2细菌 说课稿2023-2024学年人教版生物八年级上册
- 船舶智能电气课程评价体系在教学质量保障中的作用
- 2025年9月 基孔肯雅热疫情防控工作的经验总结报告
- 2025年中国硅灰石超细粉市场调查研究报告
- 福建省雷电防护装置检测资质认定实施细则(修订)
- 2025年幼儿园班级管理考试题及答案
- 鞘内药物输注技术
- 2025年物联网领域射频识别(RFID)技术创新与产业融合发展报告
- 2025年安全培训试题及答案
- 2025年工会财务知识竞赛考试题库及参考答案
- 制造企业资金管理办法
- 军队伤病员管理暂行办法
- 上海婚恋婚介培训课件
评论
0/150
提交评论