




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、已知点在半径为8的外,则(
)A. B. C. D.2、下列四组线段中,是成比例线段的是()A.0.5,3,2,10 B.3,4,6,2C.5,6,15,18 D.1.5,4,1.2,53、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(
)A. B. C. D.4、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(
)A.相交 B.相离 C.相切 D.无法判断5、二次函数的顶点坐标为,图象如图所示,有下列四个结论:①;②;③④,其中结论正确的个数为(
)A.个 B.个 C.个 D.个6、如图,点M、N分别是正方形ABCD的边BC、CD上的两个动点,在运动过程中保持∠MAN=45°,连接EN、FM相交于点O,以下结论:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF•DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④二、多选题(7小题,每小题2分,共计14分)1、下表中列出的是一个二次函数的自变量与函数的几组对应值:…013……6…下列各选项中,正确的是(
)A.函数图象的开口向下 B.当时,的值随的增大而增大C.函数的图象与轴无交点 D.这个函数的最小值小于2、已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,不正确的是()A.sinB= B.cosB= C.tanB= D.以上都不对3、如图,△ABC中,P为AB上点,在下列四个条件中能确定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.4、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是(
)A.函数解析式为I= B.当R=9Ω时,I=4AC.蓄电池的电压是13V D.当I≤10A时,R≥3.6Ω5、如图,下列条件能判定△ABC与△ADE相似的是(
)A. B.∠B=∠ADEC. D.∠C=∠AED6、如图,,AD与BC相交于点O,那么在下列比例式中,不正确的是(
)A. B.C. D.7、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是(
)A. B.方程有两个相等的实根C. D.点P到直线AB的最大距离第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,直线DE是⊙O的切线,切点为D,交AC于E,若⊙O半径为1,BC=4,则图中阴影部分的面积为_____.2、如图是用杠杆撬石头的示意图,是支点,当用力压杠杆的端时,杠杆绕点转动,另一端向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的端必须向上翘起,已知杠杆的动力臂与阻力臂之比为6:1,要使这块石头滚动,至少要将杠杆的端向下压______.3、如图,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直线互相垂直,的值为___.4、如图1是台湾某品牌手工蛋卷的外包装盒,其截面图如图2所示,盒子上方是一段圆弧(弧MN).D,E为手提带的固定点,DE与弧MN所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN交于点F,G.若△CDE是等腰直角三角形,且点C,F到盒子底部AB的距离分别为1,,则弧MN所在的圆的半径为_____.5、如图,点A是反比例函数图象上一点,轴于点C且与反比例函数的图象交于点B,,连接OA,OB,若的面积为6,则_________.6、如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用以下步骤作图:①以点A为圆心,适当长为半径作弧交射线AN于点C,交线段AB于点D;②以点C为圆心,适当长为半径画弧;然后再以点D为圆心,同样长为半径画弧.前后两弧在∠NAB内交于点E;③作射线AE,交PQ于点F;若AF=2,∠FAN=30°,则线段BF的长为_____.7、如图,在△ABC中,∠B=45°,tanC=,AB=,则AC=_____.四、解答题(6小题,每小题10分,共计60分)1、新冠肺炎疫情期间,我国各地采取了多种方式进行预防.其中,某地运用无人机规劝居民回家.如图,无人机于空中A处测得某建筑顶部B处的仰角为,测得该建筑底部C处的俯角为.若无人机的飞行高度为,求该建筑的高度(结果取整数),参考数据:,,.2、小明和小丽先后从A地出发同一直道去B地,设小丽出发第时,小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是.(1)小丽出发时,小明离A地的距离为.(2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?3、如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,).(1)求该抛物线的解析式;(2)若直线y=kx(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值,求m的值.4、(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.求证:;(2)类比探究:如图(2),在矩形中,将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接,若,,求的长.5、定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;(2)如图2,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.6、(1)方法导引:问题:如图1,等边三角形的边长为6,点是和的角平分线交点,,绕点任意旋转,分别交的两边于,两点.求四边形面积.讨论:①小明:在旋转过程中,当经过点时,一定经过点.②小颖:小明的分析有道理,这样我们就可以利用“”证出.③小飞:因为,所以只要算出的面积就得出了四边形的面积.老师:同学们的思路很清晰,也很正确.在分析和解决问题时,我们经常会借用特例作辅助线来解决一般问题:请你按照讨论的思路,直接写出四边形的面积:________.(2)应用方法:①特例:如图2,的顶点在等边三角形的边上,,,边于点,于点,求的面积.②探究:如图3,已知,顶点在等边三角形的边上,,,记的面积为,的面积为,求的值.③应用:如图4,已知,顶点在等边三角形的边的延长线上,,,记的面积为,的面积为,请直接写出与的关系式.
-参考答案-一、单选题1、A【解析】【分析】根据点P与⊙O的位置关系即可确定OP的范围.【详解】解:∵点P在圆O的外部,∴点P到圆心O的距离大于8,故选:A.【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法.2、C【解析】【分析】根据各个选项中的数据可以判断哪个选项中的四条线段不成比例,本题得以解决.【详解】解:∵,故选项A中的线段不成比例,不符合题意;∵,故选项B中的线段不成比例,不符合题意;∵,故选项C中的线段成比例,符合题意;∵,故选项D中的线段不成比例,不符合题意,故选:C【考点】本题考查比例线段,解题的关键是明确题意,找出所求问题需要的条件.3、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.4、A【解析】【分析】过点C作CD⊥AB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解.【详解】解:过点C作CD⊥AB于点D,如图所示:∵,,,∴,根据等积法可得,∴,∵以点为圆心,为半径的圆,∴该圆的半径为,∵,∴圆与AB所在的直线的位置关系为相交,故选A.【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.5、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可.【详解】解:由图像可知a<0,c>0,∵对称轴在正半轴,∴>0,∴b>0,∴,故①正确;当x=2时,y>0,故,故③正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2<,解得a<,故②,④正确;故选:A.【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键.6、A【解析】【分析】由旋转的性质可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可证△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正确;由“SAS”可证△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正确;通过证明△DAE∽△BFA,可得,可证BC2=DE•BF,故③正确;通过证明点A,点B,点M,点F四点共圆,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可证MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④错误,即可求解.【详解】解:将△ABM绕点A逆时针旋转90°,得到△ADM′,将△ADF绕点A顺时针旋转90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴点M'在直线CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正确;∵将△ADF绕点A顺时针旋转90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正确;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE•BF,故③正确;∵∠FBM=∠FAM=45°,∴点A,点B,点M,点F四点共圆,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④错误,故选:A.【考点】本题考查了全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,旋转的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.二、多选题1、BD【解析】【分析】根据抛物线经过点(0,-4),(3,-4)可得抛物线对称轴为直线,由抛物线经过点(-2,6)可得抛物线开口向上,进而求解.【详解】解:∵抛物线经过点(0,-4),(3,-4),∴抛物线对称轴为直线,∵抛物线经过点(-2,6),∴当x<时,y随x增大而减小,∴抛物线开口向上,且跟x轴有交点,故A,C错误,不符合题意;∴x>时,y随x增大而增大,故B正确,符合题意;由对称性可知,在处取得最小值,且最小值小于-6.故D正确,符合题意.故选:BD.【考点】本题考查二次函数的图象与性质,解题关键是掌握二次函数与方程的关系.2、ABD【解析】【分析】根据勾股定理求出AB的值,再根据锐角三角函数定义求出的三个函数值,进行判断即可得.【详解】解:如图所示,在中,AC=2,BC=3,根据勾股定理,,A、,选项说法错误,符合题意;B、,选项说法错误,符合题意;C、,选项说法正确,不符合题意;D、选项C说法正确,选项说法错误,符合题意;故选ABD.【考点】本题考查了锐角三角形函数的定义,解题的关键是掌握勾股定理和锐角三角函数的定义.3、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A、B、C进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对D进行判断.【详解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故选项A正确,符合题意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故选项B正确,符合题意;∵∠CAP=∠BAC,只有一组角相等,∴不能判断△APC和△ACB相似,故选项C错误,不符合题意;∵,∠A是夹角,∴△APC∽△ACB,故选项D正确,符合题意.故答案为:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.4、BD【解析】【分析】设函数解析式为,将点(4,9)代入判断A错误;将R=9Ω代入判断B正确;由解析式判断C错误;由函数性质判断D正确.【详解】解:设函数解析式为,将点(4,9)代入,得,∴函数解析式为,故A错误;当R=9Ω时,I=4A,故B正确;蓄电池的电压是36V,故C错误;∵39>0,∴I随R的增大而减小,∴当I≤10A时,R≥3.6Ω,故D正确;故选:BD.【考点】此题考查了求反比例函数解析式,反比例函数的增减性,已知自变量求函数值的大小,正确掌握反比例函数的综合知识是解题的关键.5、ABD【解析】【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似可对A、C进行判断;根据有两组角对应相等的两个三角形相似可对B、C进行判断.【详解】解:∵∠EAD=∠BAC,当,∠A=∠A,∴△ABC∽△ADE,故选项A符合题意;当∠B=∠ADE时,△ABC∽△ADE,故选项B符合题意;C选项中角A不是成比例的两边的夹角,故选项C不符合题意;当∠C=∠AED时,△ABC∽△ADE,故选项D符合题意;故选:ABD.【考点】本题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.6、ABD【解析】【分析】先判断三角形相似,再根据相似三角形的对应边成比例,则可判断A、B、C的正确性,根据基本事实,一组平行线被两条直线所截的对应线段成比例,判断D的正确性.【详解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正确;故B不正确;故C正确;∵,∴即故D不正确;故选:ABD.【考点】本题考查了相似三角形的判定和相似三角形的性质以及基本事实的应用,根据性质找到对应的边成比例是解答此题的关键.7、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断.【详解】解:由图象可知,,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,,即,由抛物线的对称轴为得,则,即,又A(1,3),B(4,0)在抛物线上,则,解得,,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形,又直线由直线平移得到,且轴,,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD.【考点】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离.三、填空题1、【解析】【分析】连接OD、OE、AD,AD交OE于F,如图,根据切线的性质得到∠BAC=90°,利用余弦的定义可计算出∠B=60°,则根据圆周角定理得到∠ADB=90°,∠AOD=120°,于是可计算出BD=1,AD=,接着证明△ADE为等边三角形,求出OF=,根据扇形的面积公式,利用S阴影部分=S四边形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD进行计算.【详解】解:连接OD、OE、AD,AD交OE于F,如图,∵AC是⊙O的切线,切点为A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直线DE、EA都是⊙O的切线,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE为等边三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S阴影部分=S四边形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案为.【考点】本题考查圆的切线,圆周角定理,扇形面积公式,锐角三角函数求角,30°角直角三角形的性质,掌握和运用圆的切线,圆周角定理,扇形面积公式,锐角三角函数求角,30°角直角三角形的性质是解题关键.2、60【解析】【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【详解】解:如图;AM、BN都与水平线垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC与BC之比为6:1,∴,即AM=6BN;∴当BN≥10cm时,AM≥60cm;故要使这块石头滚动,至少要将杠杆的端点A向下压60cm.故答案为:60.【考点】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.3、【解析】【分析】延长AD交GB于点M,交BC的延长线于点H,则AHBH,由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先证出∠AGB=∠DGC,由,证出△AGB△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出,即可得出的值.【详解】解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AHBH,GE是AB的垂直平分线,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考点】本题是相似三角形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、锐角三角函数等知识,本题难度较大,综合性强,解题的关键是通过作辅助线综合运用全等三角形和相似三角形的性质.4、.【解析】【分析】以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设抛物线的表达式为y=ax2+1,因为△CDE是等腰直角三角形,DE=2,得点E的坐标为(1,2),可得抛物线的表达式为y=x2+1,把当y代入抛物线表达式,求得MH的长,再在Rt△FHM中,用勾股定理建立方程,求得所在的圆的半径.【详解】如图,以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设所在的圆的圆心为P,半径为r,过F作y轴的垂线交y轴于H,设抛物线的表达式为y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴点E的坐标为(1,2),代入抛物线的表达式,得:2=a+1,a=1,∴抛物线的表达式为y=x2+1,当y时,即,解得:,∴FH.∵∠FHM=90°,DE与所在的圆相切,∴,解得:,∴所在的圆的半径为.故答案为.【考点】本题考查了圆的切线的性质,待定系数法求抛物线的表达式,垂径定理.解题的关键是建立合适的平面直角坐标系得出抛物线的表达式.5、【解析】【分析】利用反比例函数比例系数k的几何意义得到S△AOC=||=-,S△BOC=||=-,利用AB=3BC得到S△ABO=3S△OBC=6,所以-=2,解得=-4,再利用-=6+2得=-16,然后计算+的值.【详解】解:∵AC⊥x轴于点C,与反比例函数y=(x<0)图象交于点B,而<0,<0,∴S△AOC=||=-,S△BOC=||=-,∵AB=3BC,∴S△ABO=3S△OBC=6,即-=2,解得=-4,∵-=6+2,解得=-16,∴+=-16-4=-20.故答案为:-20.【考点】本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.6、2【解析】【分析】过B作BG⊥AF于G,依据AB=BF,运用等腰三角形的性质,即可得出GF的长,进而得到BF的长.【详解】解:如图,过B作BG⊥AF于G,∵MN∥PQ,∴∠FAN=∠3=30°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案为:2.【考点】本题考查了平行线的性质、角平分线的基本作图、直角三角形30度角的性质,熟练掌握平行线和角平分线的基本作图是关键.7、【解析】【分析】先过点A作AD⊥BC,垂足是点D,得出AD2+BD2=AB2=2,再根据∠B=45°,得出AD=BD=1,然后根据tanC=,得出=,CD=2,最后根据勾股定理即可求出AC.【详解】过点A作AD⊥BC,垂足是点D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案为.【考点】此题考查了解直角三角形,用到的知识点是勾股定理、解直角三角形等,关键是作出辅助线,构造直角三角形.四、解答题1、42m【解析】【分析】如图,过点A作,垂足为E.利用,求解即可.【详解】解:如图,过点A作,垂足为E.由题意可知,,,.在中,,∴.在中,,.∵,∴.答:该建筑的高度约为.【考点】本题考查了解斜三角形,通过作高化斜三角形为直角三角形,并准确求解是解题的关键.2、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可.【详解】解(1)当x=0时,=2250,=2000∴-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键.3、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可;(2)联立两个函数的解析式,消去得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当<<结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中,抛物线的解析式为:(2)联立一次函数与抛物线的解析式得:整理得:∵x1+x2=4-3k,x1•x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函数的对称轴为直线x=2,当m<2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,当m≥2时,当x=2时,y有最大值,∴=3,∴m=,综上所述,m的值为-或.【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.4、(1)见解析;(2);见解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再证明四边形DQFG是平行四边形即可解决问题;(2)如图2中,作GM⊥AB于M.然后证明△ABE∽△GMF即可解决问题;(3)如图3中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【详解】(1)如图(1),∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四边形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四边形DQFG是平行四边形,∴DQ=GF,∴FG=AE;(2).理由:如图(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年语文诗词题目题库及答案
- 兽医影像学考试题及答案
- 2025编辑中级考试真题及答案
- 2025北京自学考试真题及答案
- 2025北京小学考试真题及答案
- DB52T1890-2025北斗卫星导航系统地质灾害位移监测数据安全技术规范
- DB14T28642025工业企业温室气体排放核算技术要求
- 光伏接入标准优化-洞察与解读
- 法院参公考试试题及答案
- 2025年采供血人员考试题及答案
- 微电网及储能技术
- 工程经济学-邵颖红-第五版-课后作业
- 变压器主保护基本知识测试题
- 临汾市社区工作者考试题库2023
- 焊接应力计算讲义
- 转型中的地方政府:官员激励与治理(第二版)
- TCEEIA 572-2022 配电电缆局部放电定位及故障预警系统技术规范
- 数字心率计设计资料
- GB/T 3995-2006高铝质隔热耐火砖
- 人教版初中数学《与三角形有关的角》优秀版课件
- 渗滤液处理站运行方案
评论
0/150
提交评论