




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省韶山市中考数学真题分类(数据分析)汇编专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是(
)A.7 B.8 C.9 D.102、已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.3、某同学使用计算器求15个数据的平均数时,错将一个数据15输成105,那么由此求出的平均数与实际平均数的差是()A.6.5 B.6 C.0.5 D.-64、某小组9位同学的中考体育模拟测试成绩(满分30分)依次为26,30,29,28,30,27,30,29,28,则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.28,30 D.30,285、某乡镇为了增加农民收入,大力发展种植业,该镇一农户承包荒山种植苹果,收获季节,随机抽取50个苹果并秤得它们的质量如下表(单位:克),则这些苹果重量的众数和中位数分别是(
).重量(g)100120140160数量(个)1015178A.140,130 B.140,120 C.17,16 D.17,1306、某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是(
)A.平均分不变,方差变大 B.平均分不变,方差变小C.平均分和方差都不变 D.平均分和方差都改变7、某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数10203040关于这组数据,下列说法正确的是()A.众数是2册 B.中位数是2册C.平均数是3册 D.方差是1.58、下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、要从小华、小明两名射击运动员中选择一名运动员参加射击比赛,在赛前对他们进行了一次选拔赛,下图为小华、小明两人在选拔赛中各射击10次成绩的折线图和表示平均数的水平线.你认为应该选择______(填“小华”或“小明”)参加射击比赛;理由是__________.2、一组数据5,4,2,4,5的方差是________.3、某生物学习小组进行了“亲手发豆芽感受新生长”的生物实践活动,在《种子萌发及生长》项目学习报告中,记录了颗黄豆芽在生芽第三天时的长度如表:黄豆芽的长度/对应黄豆发芽的数量/颗则黄豆芽长度的中位数为___________.4、某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:组别一二三四五六七八得分9095908890928590这组数据的众数是_____.5、若一组数据4,9,5,m,3的平均数是5,则这组数据的众数是________.6、开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(℃)36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的中位数和众数分别是___________℃.7、在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9,则这组数据的平均数是___________.三、解答题(7小题,每小题10分,共计70分)1、如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.2、小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如下测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.3、某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表平均数中位数众数方差甲班8.58.5________________乙班8.5_______101.6(2)根据上表中的平均数和中位数你认为哪班的成绩较好?并说明你的理由4、为了庆祝新中国成立72周年,某校学生处在七年级和八年级开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,并从七、八年级各随机抽取了名同学的知识竞赛成绩数据,并将数据进行整理分析(竞赛成绩用表示,共分为四个等级:A.,B.,C.,D.)下面给出了部分信息:七年级等中全部学生的成绩为:,,,,,,,,,.八年级等中全部学生的成绩为:,,,,,,,,,.七、八年级抽取的学生知识竞赛成绩统计表平均数中位数众数满分率七年级八年级根据以上信息,解答下列问题:(1)直接写出上述表中,,,的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的名学生和八年级的名学生参加了此次知识竞赛,若成绩在分(包含分)以上为优秀,请你估计两个年级此次知识竞赛中优秀的人数.5、杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成如下统计图表(数据分组包含左端值不包含右端值).甲组杨梅树落果率频数分布表落果率组中值频数(棵)0≤x<10%5%1210%≤x<20%15%420%≤x<30%25%230%≤x<40%35%140%≤x<50%45%1乙组杨梅树落果率频数分布直方图(1)甲、乙两组分别有几棵杨梅树的落果率低于20%?(2)请用落果率的中位数或平均数,评价市农科所“用防雨布保护杨梅果实”的实际效果;(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.6、九(1)班准备从甲、乙两名男生中选派一名参加学校组织的一分钟跳绳比赛,在相同的条件下,分别对两名男生进行了八次一分钟跳绳测试.现将测试结果绘制成如下不完整的统计图表,请根据统计图表中的信息解答下列问题:平均数中位数众数方差甲17593.75乙175175180,175,170(1)求、的值;(2)若九(1)班选一位成绩稳定的选手参赛,你认为应选谁,请说明理由;(3)根据以上的数据分析,请你运用所学统计知识,任选两个角度评价甲乙两名男生一分钟跳绳成绩谁优.7、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.-参考答案-一、单选题1、C【解析】【分析】根据众数的定义求解.【详解】解:在这一组数据中9出现了4次,次数是最多的,故众数是9;故选:C.【考点】本题考查了众数的意义.众数是一组数据中出现次数最多的数.2、D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【考点】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.3、B【解析】【详解】求15个数据的平均数时,错将其中一个数据15输入为105,即使总和增加了90;那么由4、B【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:众数是一组数据中出现次数最多的数,在这一组数据中30出现了3次,次数最多,故众数是30;将这组数据从小到大的顺序排,处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29.故选:B.【考点】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、A【解析】【分析】根据众数定义找出重复出现次数最多的数据,根据中位数,将数据从小到大排列,处于中间位置120g与140g,求其平均数即可.【详解】解:从表格中知重复出现次数最多的数据时140g,∴这些苹果重量的众数为140g,根据中位数50个数据,从小到大排列,第25个数据为120g,第26个数据为140g,中位数为g.故选A.【考点】本题考查众数与中位数,掌握众数与中位数的定义是解题关键.6、B【解析】【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.【考点】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7、B【解析】【分析】根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【详解】解:A、众数是3册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.故选B.【考点】本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.8、C【解析】【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【详解】方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.【考点】本题考查了抽样调查、用样本估计总体、众数和方差,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题1、
小明
小明的成绩更稳定【解析】【分析】根据两个折线统计图可以看出二人的平均成绩相同,但小明的成绩更稳定,即可做出选择.【详解】解:由折线统计图可以看出,小华和小明的平均成绩相同,都是7.5,但小明的成绩比较稳定.故答案为:小明;小明的成绩更稳定.【考点】本题考查了平均数与方差等知识,平均数反映了一组数据的集中趋势,方差反映了一组数据的离散程度,方差越小,成绩越稳定,方差可以通过计算,也可以通过统计图进行观察比较大小.2、1.2##65【解析】【分析】首先求出平均数,然后根据方差的计算法则求出方差.【详解】解:平均数,数据的方差,故答案为:1.2.【考点】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法.3、15.5【解析】【分析】中位数是将一组数据按照大小顺序排列后,取最中间或最中间两个数的平均数,根据中位数的定义即可得出答案.【详解】解:将这30颗黄豆芽的长度排序后,第15,16个数据分别为15mm,16mm,所以中位数为:(mm),故答案为:15.5.【考点】本题主要考查了中位数的定义,解决本题的关键是要熟练掌握中位数的定义.4、90【解析】【分析】根据众数的概念:众数是一组数据中出现次数最多的数可得出答案.【详解】解:90出现了4次,出现的次数最多,则众数是90;故答案为90【考点】此题考查了众数,注意中位数和众数的区别,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.5、4【解析】先根据算术平均数的概念求出m的值,再将数据重新排列,继而利用众数的概念求解可得.【详解】解:∵数据4,9,5,m,3的平均数是5,∴4+9+5+m+3=5×5,解得m=4,则这组数据为3、4、4、5、9,∴这组数据的众数为4,故答案为4.【考点】本题主要考查众数及平均数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.6、36.5,36.6【解析】【分析】根据中位数的定义:一组数据从小到大(或从大到小)排列,若数据有奇数个,则最中间的数为中位数,若数据有偶数个,则最中间两数的平均数为中位数,根据众数的定义:一组数据出现次数最多的数,即可判断.【详解】共有14个数据,其中第7、8个数据均为36.5,这组数据的中位数为36.5;其中36.6出现了4次,出现次数最多,众数为36.6.【考点】本题考查了中位数和众数,理解中位数和众数的定义是解题的关键.7、【解析】【分析】根据求平均数的公式求解即可.【详解】解:由题意可知:平均数,故答案为:【考点】本题考查平均数,解题的关键是掌握求一组数据的平均数的方法:一般地,对于n个数,我们把叫做这n个数的算术平均数,简称平均数.三、解答题1、(1)这5天的日最低气温的波动较大;(2)①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.【解析】【分析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:(可简单记忆为“方差等于差方的平均数”).【详解】解:(1)这5天的日最高气温和日最低气温的平均数分别是.方差分别是,.由可知,这5天的日最低气温的波动较大.(2)本题答案不唯一,例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.【考点】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、(1)平均数,小聪:8分;小明:8分;(2)平方分;(3)见解析(答案不唯一)【解析】【分析】(1)反映一组数据的平均水平,用平均数描述;利用平均数公式求解;(2)利用方差公式求解;(3)从平均数、方差、平均数和方差综合三个方面进行分析来看.【详解】解:(1)平均数:(分)(分);(2)(平方分)(3)答案不唯一,如:①从平均数看,,∴两人的平均水平一样.②从方差来看,,∴小聪的成绩比较稳定,小明的成绩波动较大.③从平均数和方差来看,,,∴两人的平均水平一样,但小聪的成绩更稳定.【考点】本题考查平均数和方差.平均数反映一组数据的平均水平.一组数据的方差越小,表明这组数据的波动越小,即这组数据越稳定.3、(1)8.5;0.7;8;(2)甲班的成绩较好.【解析】【分析】(1)根据众数、方差和中位数的定义及公式分别进行解答即可;(2)从平均数、中位数两个角度分别进行分析即可;【详解】解:(1)甲班的众数是8.5;甲班的方差是:0.7;乙班的中位数是8;(2)因为甲、乙两班成绩的平均数相同,而甲班成绩的中位数高于乙班的中位数,所以甲班的成绩较好.【考点】考查条形统计图,算术平均数,中位数,众数,方差,掌握算术平均数,中位数,众数,方差的求法以及意义是解题的关键.4、(1),,,;(2)七年级,见解析;(3)七年级810人,八年级625人【解析】【分析】(1)根据七年级等中有10名学生,可求出等学生占总体的比例,而得到的值;根据扇形统计图各部分所占的百分比,可求出;七年级学生中,等学校占中,即有..人,将七年级等中全部学生的成绩按从小到大排列后,可得七年级学生成绩的中位数;根据八年级学生中满分有4人,可求出满分率,可得;(2)根据中位数,满分率解答即可,(3)根据七、八年级样本中的优秀率,分别用和相乘即可求出结果.【详解】解:(1)∵根据题意可知,七年级等中有10名学生,∴等学生占总体的:,∴,∴∵七年级等中全部学生的成绩为:,,,,,,,,,,按从小到大排列后是:,,,,,,,,,,∵七年级学生中,等学校占中,即有人,∴七年级抽取的学生中,中位数是:,∵八年级等中全部学生的成绩为:,,,,,,,,,,满分有4人,∴八年级等中全部学生的成绩满分率为:∴综上所述,,,,;(2)七年级更好,平均数相同,但中位数,满分平均7年级更高;(3)七年级中优秀的人数是:,∵八年级等学生有10人,∴八年级中优秀的人数是:.【考点】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策等知识点,熟悉掌握相关知识点是正确解答的关键.5、(1)甲、乙两组分别有16棵和2棵杨梅树的落果率低于20%;(2)“用防雨布保护杨梅果实”大大降低了杨梅树的落果率,理由见详解;(3)该果园的杨梅树全部加装这种防雨布,落果率可降低21%.【解析】【分析】(1)根据频数直方图和频数统计表,直接求解即可;(2)分别求出甲乙两组杨梅树落果率的组中值的中位数,即可得到结论;(3)分别求出甲乙两组杨梅的落果率的平均数,即可得到答案.【详解】解:(1)12+4=16(棵),1+1=2(棵),答:甲、乙两组分别有16棵和2棵杨梅树的落果率低于20%;(2)∵甲组杨梅树落果率的组中值从小到大排列:5%,5%,5%,5%,5%,5%,5%,5%,5%,5%,5%,5%,15%,15%,15%,15%,25%,25%,35%,45%,∴甲组杨梅树落果率的组中值的中位数为:5%,∵乙组杨梅树落果率的组中值从小到大排列:5%,15%,25%,25%,25%,35%,35%,35%,35%,35%,35%,35%,35%,35%,35%,45%,45%,45%,45%,45%,∴乙组杨梅树落果率的组中值的中位数为:35%,∴“用防雨布保护杨梅果实”的落果率的中位数低于“不加装防雨布”的落果率的中位数,∴“用防雨布保护杨梅果实”大大降低了杨梅树的落果率;(3)(12×5%+4×15%+2×25%+1×35%+1×45%)÷20=12.5%,(1×5%+1×15%+3×25%+10×35%+5×45%)÷20=33.5%,33.5%-12.5%=21%,答:该果园
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铜川易源电力实业有限责任公司招聘(3人)模拟试卷附答案详解(完整版)
- 2025年全科内科学常见内科疾病诊治考试答案及解析
- 2025年护理学临床护理操作规范模拟考试答案及解析
- 2025年产科助产专业技能考核答案及解析
- 2025成人高考英语真题及答案宁夏
- 2025年卫生法学院医疗纠纷案例分析试题答案及解析
- 2025年儿科小儿肺炎疫苗接种指导评估答案及解析
- 2025年放射科MRI检查操作技能考试答案及解析
- 2025年皮肤科常见病例诊断挑战模拟试卷答案及解析
- 2025湖南郴州市第一人民医院招聘专技人员模拟试卷附答案详解(突破训练)
- 2025年吉安县公安局面向社会公开招聘留置看护男勤务辅警29人笔试备考试题及答案解析
- 稳评从业人员培训考试及答案解析
- 2025年甘肃省兰州市榆中县招聘乡村医生考试参考试题及答案解析
- 黑素细胞基因编辑-洞察及研究
- 手术操作分类代码国家临床版3.0
- 监控扩容施工方案
- 轴的计算与校核、传动轴计算(无密码可修改)
- 职称若干问题回答
- 《复旦大学介绍》
- 静电测试作业指导书
- 马云演讲中英文版
评论
0/150
提交评论