




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,过点C作⊙O的切线,交AB的延长线于点D.设∠A=α,∠D=β,则()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°2、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20003、如图,Rt△ABC中,,,,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△ABC相似时,t的值为()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.44、如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.5、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75°6、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、如图,在四边形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,点P是边BC上的动点,若△ABP与△CDP相似,则BP=(
)A.3.6B.C.D.2.42、不能说明△ABC∽△A’B’C’的条件是(
)A.或 B.且C.且 D.且3、在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且a=5,b=12,c=13,下面四个式子中正确的有()A.sinA= B.cosA= C.tanA= D.sinB=4、如图,已知等边三角形ABC的边长为2,DE是它的中位线.则下面四个结论中正确的有()A.DE=1 B.AB边上的高为C.△CDE∽△CAB D.△CDE的面积与△CAB面积之比为1:45、如图,在△ABC中,∠C=90°,AB=5cm,cosB=.动点D从点A出发沿着射线AC的方向以每秒1cm的速度移动,动点E从点B出发沿着射线BA的方向以每秒2cm的速度移动.已知点D和点E同时出发,设它们运动的时间为t秒,连接BD.下列结论正确的有()A.BC=4cm;B.当AD=AB时,tan∠ABD=2;C.以点B为圆心、BE为半径画⊙B,当t=时,DE与⊙B相切;D.当∠CBD=∠ADE时,t=.6、下列四个命题中正确的命题有(
)A.两个矩形一定相似 B.两个菱形都有一个角是40°,那么这两个菱形相似C.两个正方形一定相似 D.有一个角相等的两个等腰梯形相似7、如图,正方形ABCD,点E在边AB上,且AE:EB=2:3,过点A作DE的垂线,垂足为I,交BC于点F,交BD于点H,延长DC至G,使CG=DC,连接GI,EH.下列结论正确的是(
)A. B. C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、已知二次函数,当分别取时,函数值相等,则当取时,函数值为______.2、我们用符号表示不大于的最大整数.例如:,.那么:(1)当时,的取值范围是______;(2)当时,函数的图象始终在函数的图象下方.则实数的范围是______.3、如图所示,在△ABC中,,,.(1)如图1,四边形为的内接正方形,则正方形的边长为_________;(2)如图2,若△ABC内有并排的n个全等的正方形,它们组成的矩形内接于,则正方形的边长为_________.4、抛物线的开口方向向______.5、已知点A(3,a)、B(-1,b)在函数的图像上,那么a___b(填“>”或“=”或“<”)6、将二次函数化成一般形式,其中二次项系数为________,一次项系数为________,常数项为________.7、小明的身高为1.6,他在阳光下的影长为2,此时他旁边的旗杆的影长为15,则旗杆的高度为_______.四、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.2、解方程与计算(1)
(2)计算:.3、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.4、如图,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,当BD的长是多少时,图中的两个直角三角形相似?5、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.6、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.-参考答案-一、单选题1、C【解析】【分析】连接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切线,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【详解】连接OC,如图,∵⊙O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故选:C.【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质.2、D【解析】【分析】设二次函数的解析式为:y=ax2+bx+c,根据题意列方程组即可得到结论.【详解】解:设二次函数的解析式为:y=ax2+bx+c,∵当x=55,y=1800,当x=75,y=1800,当x=80时,y=1550,∴,解得a=−2,b=260,c=−6450,∴y与x的函数关系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故选:D.【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键.3、A【解析】【分析】求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出结果.【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=AB=2cm,∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选A.【考点】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.4、A【解析】【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【考点】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.5、B【解析】【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【详解】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故选:B.【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.6、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标为(2,1),∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是.故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.二、多选题1、ABC【解析】【分析】根据相似求出相似比,根据相似比分类讨论计算出结果即可.【详解】解:∠B=∠C,根据题意:或,则:或,则:或,故答案为:或,故选:ABC.【考点】本题考查相似三角形得的性质与应用,能够熟练掌握相似三角形的性质是解决本题的关键.2、ABD【解析】【分析】根据相似三角形的判定方法求解即可.【详解】解:A、或,不能判定,符合题意;B、且,不能判定,符合题意;C、且,能判定,不符合题意;D、且,不能判定,符合题意.故选:ABD.【考点】此题考查了相似三角形的判定方法,解题的关键是熟练掌握相似三角形的判定方法.相似三角形的判定方法:两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;两角对应相等的两个三角形相似.3、AC【解析】【分析】由a、b、c的关系可知,△ABC是直角三角形,然后根据锐角三角函数的定义求各角函数值.【详解】解:由题意,∠A,∠B,∠C对边分别为a,b,c,a=5,b=12,c=13,∴△ABC是直角三角形,∠C=90°.∴A、sinA=,该选项正确,符合题意;B、cosA=,该选项不正确,不符合题意;C、tanA=,该选项正确,符合题意;D、sinB=,该选项不正确,不符合题意;故选:AC.【考点】本题考查的是锐角三角函数的定义,锐角A的对边a与斜边c的比叫做∠A的正弦;锐角A的邻边b与斜边c的比叫做∠A的余弦;锐角A的对边a与邻边b的比叫做∠A的正切.4、ABCD【解析】【分析】根据图形,利用三角形中位线定理,可得DE=1,A成立;AB边上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位线,可得DE∥AB,利用平行线分线段成比例定理的推论,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它们的面积比等于相似比的平方,就等于1:4,D也成立.【详解】解:∵DE是它的中位线,∴DE=AB=1,故A正确,∴DE∥AB,∴△CDE∽△CAB,故C正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正确,∵等边三角形的高=,故B正确.故选ABCD.【考点】本题利用了:1、三角形中位线的性质;2、相似三角形的判定:一条直线与三角形一边平行,则它所截得三角形与原三角形相似;3、相似三角形的面积等于对应边的比的平方;4、等边三角形的高=边长×sin60°.5、AB【解析】【分析】A.根据AB=5cm,cosB=即可求出BC的长度;B.由AD=AB,可得∠ABD=∠D,根据勾股定理求出AC的长度,然后在Rt△BCD中,即可求出tan∠ABD=tan∠D=2;C.根据DE与⊙B相切时,DE⊥BE,可得cos∠A=,代入即可求出运动的时间t的值,即可判断;D.根据题意可得满足条件的t的值应该有两个,进而可判断.【详解】A、在△ABC中,∵∠ACB=90°,AB=5cm,cosB=,∴,∴BC=AB•cos∠ABC=5×=4(cm),故A正确.B、在直角△ABC中,AC==3(cm),当AD=AB=5时,∠ABD=∠D,如图1,∴CD=AD﹣AC=5﹣3=2(cm),在Rt△BCD中,tan∠D==2,∴tan∠ABD=tan∠D=2,故B正确,C、如图,当DE与⊙B相切时,DE⊥BE.则有cos∠A=,∴,∴t=,当t=时,DE与⊙B相切;故C错误.D、满足条件的t的值应该有两个,显然D错误,故答案为:AB.【考点】此题考查了三角形动点问题,解直角三角形,圆切线的性质和判定,解题的关键是正确分析题目中的等量关系列出方程求解.6、BC【解析】【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足来判断正误.【详解】解:A两个矩形对应角都是直角相等,对应边不一定成比例,所以不一定相似,故本小题错误;B两个菱形有一个角相等,则其它对应角也相等,对应边成比例,所以一定相似,故本小题正确;C两个正方形一定相似,正确;D有一个角相等的两个等腰梯形,对应角一定相等,但对应边的比不一定相等,故本小题错误.故选:BC.【考点】本题考查的是相似多边形的判定及菱形,矩形,正方形,等腰梯形的性质及其定义.7、ABD【解析】【分析】证明△BAF≌△ADE,可判断选项A和选项B,设AE=2a,则EB=3a,正方形ABCD的边长为5a,求得BH=a,DH=a,利用反证法判断选项C;利用相似三角形的性质以及三角函数求得IG=a,即可判断选项D.【详解】解:∵AE:EB=2:3,∴设AE=2a,则EB=3a,正方形ABCD的边长为5a,∵四边形ABCD是正方形,AI⊥DE,∴AD=AB,∠DAB=∠ABF=∠AID=90°,∴∠BAF=90°-∠DAI=∠ADE,∴△BAF≌△ADE,∴BF=AE,故选项A正确;∴S△BAF=S△ADE,∴S△BAF-S△AEI=S△ADE-S△AEI,即S△ADI=S四边形BFIE,故选项B正确;∵四边形ABCD是正方形,边长为5a,∴BD=5a,BF∥AD,∴,∴BH=a,DH=a,假设EH⊥BD,则△BHE是等腰直角三角形,则BE=BH=3a,∴假设EH⊥BD不成立,故选项C错误;过点I作IM⊥AD于点M,过点I作IN⊥DC于点N,∵四边形ABCD是正方形,∴∠ADC=90°,∴四边形IMDN是矩形,∵DE=a,AE×AD=DE×AI,∴AI=a,∴DI==a,∵sin∠ADI=,cos∠ADI=,∴IM=a,DM=a,∵CG=DC,∴DG=a,∴NG=a,IN=DM=a,∴IG=a,∴IG=DG.故选项D正确;故选:ABD.【考点】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,解题的关键是灵活运用所学知识解决问题,三、填空题1、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值.【详解】解:∵二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴当x=2x1+2x2时,y=2×0+2020=0+2020=2020,故答案为:2020.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2、
或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围.(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.【详解】(1)因为表示整数,故当时,的可能取值为0,1,2.当取0时,;当取1时,;当=2时,.故综上当时,x的取值范围为:.(2)令,,,由题意可知:,.①当时,=,,在该区间函数单调递增,故当时,,得.②当时,=0,不符合题意.③当时,=1,,在该区间内函数单调递减,故当取值趋近于2时,,得,当时,,因为,故,符合题意.故综上:或.【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型.3、
【解析】【分析】(1)根据题意画出图形,作CN⊥AB,再根据GF∥AB,可知△CGF∽△CAB,由相似三角形的性质即可求出正方形的边长;(2)设正方形的边长是x,则过点C作CN⊥AB,垂足为N,交GF于点M,易得△CGF∽△CAB,所以,求出x值即可.【详解】解:(1)在图1中,作CN⊥AB,交GF于点M,交AB于点N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB•CN=BC•AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,设正方形边长为x,则,解得:,∴正方形DEFG的边长为;(2)如图,过点C作CN⊥AB,垂足为N,交GF于点M,设小正方形的边长为x,∵四边形GDEF为矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的边长是.【考点】本题主要考查了正方形,矩形的性质和相似三角形的性质.会利用三角形相似中的相似比来得到相关的线段之间的等量关系是解题的关键.4、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.5、<【解析】【分析】把点A(3,a),B(-1,b)代入函数上求出a、b的值,再进行比较即可.【详解】把点A(3,a)代入函数可得,a=-1;把点B(-1,b)代入函数可得,b=3;∵3>-1,即a<b.故答案为:<.【考点】本题比较简单,考查了反比例函数图象上点的坐标特点,即反比例函数图象上点的坐标一定适合此函数的解析式.6、
【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项.【详解】y=﹣2(x﹣2)2变形为:y=﹣2x2+8x﹣8,所以二次项系数为﹣2;一次项系数为8;常数项为﹣8.故答案为﹣2,8,﹣8.【考点】本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值.7、12【解析】【分析】设这根旗杆的高度为xm,利用某一时刻物体的高度与它的影长的比相等得到,然后利用比例性质求x即可.【详解】设这根旗杆的高度为xm,根据题意得解得x=12(m),即这根旗杆的高度为12m.故答案为12.【考点】本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度(测量距离);借助标杆或直尺测量物体的高度.四、解答题1、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1)抛物线过点,解得:抛物线解析式为.(2)点,∴抛物线对称轴为直线点在直线上,点,关于直线对称,当点、、在同一直线上时,最小.抛物线解析式为,∴C(0,-6),设直线解析式为,解得:直线:,,故答案为:.(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为.(4)存在点,使以点、、、为顶点的四边形是平行四边形.设N(x,y),M(,m),①四边形CMNB是平行四边形时,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四边形CNBM是平行四边形时,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四边形CNMB是平行四边形时,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);点坐标为(,),(,),(,).【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键.2、(1);(2)【解析】【分析】(1)利用配方法求解即可;(2)原式利用特殊角的三角函数值,以及零指数幂、负整数指数幂法则计算即可求出值.【详解】解:(1)原式整理得∴∴;(2)原式=【考点】本题考查了一元二次方程的求解与三角函数的求解,熟练掌握运算法则,特殊角的三角函数是解本题的关键.3、(1)顶点P的坐标为;(2)①6个;②,.【解析】【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴顶点为(2,-2a);(2)如图,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.4、当BD的长是或时,图中的两个直角三角形相似【解析】【分析】先利用勾股定理计算出BC=3,再根据相似三角形的判定方法进行讨论:当时,Rt△DBA∽Rt△BCA,即,当时,Rt△DBA∽Rt△BAC,即,然后利用比例性质求出对应的BD的长即可.【详解】在Rt△ABC中,BC3.∵∠ABC=∠ADB=90°,∴分两种情况讨论:①当时,Rt△DBA∽Rt△BCA,即,解得:BD;②当时,Rt△DBA∽Rt△BAC,即,解得:BD.综上所述:当BD的长是或时,图中的两个直角三角形相似.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.5、(1)(2)|PC−PD|最大时a的值为6(3)存在,点M的坐标为(,)【解析】【分析】(1)先确定出OE=CE=2,即可得出点C坐标,最后用待定系数法即可得出结论;(2)先求出OC解析式,由平行四边形的性质可得BC=OA=3,BC∥OA,AB∥OC,利用待定系数法可求AB解析式,求出点D的坐标,再根据三角形关系可得出当点P,C,D三点共线时,|PC-PD|最大,求出直线CD的解析式,令y=0即可求解;(3)若四边形CAMN为矩形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年常宁中考物理试卷及答案
- 快手会计笔试题目及答案
- 2025年护师整体护理题库及答案
- 英语考试试题概况及答案
- 2025年长治小学试卷真题及答案
- 贵阳地生会考试题及答案
- 广东驾照考试题目及答案
- 2025年造价工程师公路工程专项模拟试卷:公路工程设计施工进度控制策略
- 2025年经济师考试经济法专项训练试卷 法律应用冲刺押题
- 纳米保温隔热涂料行业跨境出海项目商业计划书
- 车辆管理档案管理制度
- 2025春季学期国开电大法学本科《合同法》一平台在线形考(任务1至4)试题及答案
- 药品网络交易服务三方平台质量管理体系文件-B2B平台(完整版)
- 内墙岩棉夹芯板施工方案
- 门诊输液室管理制度
- 玉米收割机合同协议书
- 热量表检定装置
- 2025软件工程师面试题库及答案
- 绿化损坏赔偿协议书
- 2025 年发展对象培训考试题及答案
- 蜜雪冰城转让店协议合同
评论
0/150
提交评论