难点解析人教版8年级数学下册《平行四边形》专项测评练习题(解析版)_第1页
难点解析人教版8年级数学下册《平行四边形》专项测评练习题(解析版)_第2页
难点解析人教版8年级数学下册《平行四边形》专项测评练习题(解析版)_第3页
难点解析人教版8年级数学下册《平行四边形》专项测评练习题(解析版)_第4页
难点解析人教版8年级数学下册《平行四边形》专项测评练习题(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图所示,在ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F,,则ABCD的面积为(

)A.24 B.32 C.40 D.482、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为()A.(,1) B.(1,1) C.(1,) D.(+1,1)3、如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC4、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是()A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形5、已知直线,点P在直线l上,点,点,若是直角三角形,则点P的个数有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为_____.2、如图,在正方形ABCD中,点O在内,,则的度数为______.3、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.4、如图,矩形ABCD中,AB=9,AD=12,点M在对角线BD上,点N为射线BC上一动点,连接MN,DN,且∠DNM=∠DBC,当DMN是等腰三角形时,线段BN的长为___.5、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.2、如图,中,对角线AC、BD相交于点O,点E,F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH.(1)求证:四边形EFGH是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为__________3、在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.

(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为________°.(2)如图2,若点F落在边BC上,且AB=CD=6,AD=BC=10,求CE的长.(3)如图3,若点E是CD的中点,AF的延长线交BC于点G,且AB=CD=6,AD=BC=10,求CG的长.4、如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,过点A作射线l∥BC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t>0),作∠PCB的平分线交射线l于点D,记点D关于射线CP的对称点是点E,连接AE、PE、BP.(1)求证:PC=PD;(2)当△PBC是等腰三角形时,求t的值;(3)是否存在点P,使得△PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由.5、在ABC中,D、E、F分别是AB、AC、BC的中点,连接DE、DF.(1)如图1,若AC=BC,求证:四边形DECF为菱形;(2)如图2,过C作CGAB交DE延长线于点G,连接EF,AG,在不添加任何辅助线的情况下,写出图中所有与ADG面积相等的平行四边形.-参考答案-一、单选题1、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得.【详解】解:∵四边形是平行四边形,,,在和中,∵,,,,则的面积为,故选:B.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键.2、B【解析】【分析】作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.3、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;当▱ABCD是菱形时,AB=BC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.4、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.5、C【解析】【分析】分别讨论,,三种情况,求出点坐标即可得出答案.【详解】如图,当时,点与点横坐标相同,代入中得:,,当时,点与点横坐标相同,,代入中得:,,当时,取中点为点,过点作交于点,设,,,,,,,,,在中,,解得:,,点有3个.故选:C.【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键.二、填空题1、【解析】【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【详解】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如图,过点D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案为:.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,平行四边形的判定和性质,含30度角的直角三角形的性质,平移的性质,正确地理解题意是解题的关键.2、135°【解析】【分析】先根据正方形的性质得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形内角和定理求解.【详解】解:∵四边形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案为:135°.【点睛】本题主要考查了正方形的性质,三角形内角和定理,解题的关键在于能够熟练掌握正方形的性质.3、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形,是等边三角形,故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.4、15或24或【解析】【分析】分三种情形讨论求解即可.【详解】解:①如图1中,当NM=ND时,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如图2中,当DM=DN时,此时M与B重合,∴BC=CN=12,∴BN=24;③如图3中,当MN=MD时,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,设BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,综上,当DMN是等腰三角形时,线段BN的长为15或24或.故答案为:15或24或.【点睛】本题考查了矩形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,注意不能漏解.5、12【解析】【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】解:∵如图所示,D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴△DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.三、解答题1、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,∴,AB=CD,∵CE=DC,∴AB=EC,,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.2、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到,再由(1)四边形EFGH是平行四边形,即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、F、G、H分别是OA、OB、OC、OD的中点,∴,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形;(2)∵点E、F、G、H分别是OA、OB、OC、OD的中点,∴,∴,∵的周长为2(AB+BC)=32,∴,∴,由(1)知:四边形EFGH是平行四边形,∴四边形EFGH的周长为.【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键.3、(1)18;(2)CE的长为;(3)CG的长为.【分析】(1)根据矩形的性质得∠DAC=36°,根据折叠的性质得∠DAE=18°;(2)根据矩形性质得∠B=∠C=90°,BC=AD=10,CD=AB=6,根据折叠的性质得AF=AD=10,EF=ED,根据勾股定理得BF=8,则CF=2,设CE=x,则EF=ED=6﹣x,根据勾股定理得,解得:,即CE的长为;(3)连接EG,,由题意得DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,则∠EFG=∠C=90°,由HL得Rt△CEG≌Rt△FEG,则CG=FG,设CG=FG=y,则AG=10+y,BG=10﹣y,在Rt△ABG中,由勾股定理得,解得,即CG的长为.【详解】解:(1)∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAC=90°-∠BAC=90°-54°=36°,∵△AED沿AE所在的直线折叠,使点D落在点F处,∴∠DAE=∠EAC=∠DAC=×36°=18°,故答案为:18;(2)∵四边形ABCD是长方形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:,解得:,即CE的长为;(3)解:如图所示,连接EG,∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=∠C=90°,在Rt△CEG和Rt△FEG中,,∴Rt△CEG≌Rt△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:,解得:,即CG的长为.【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,解题的关键是掌握并灵活运用这些知识点.4、(1)见解析;(2)t=1或或;(3)存在,△PAE是直角三角形时t=或【分析】(1)根据平行线的性质可得∠PDC=∠∠BCD,根据角平分线的定义可得∠PCD=∠BCD,则∠PCD=∠PDC,即可得到PC=PD;(2)分当BP=BC=4cm时,当PC=BC=4cm时,当PC=PB时三种情况讨论求解即可;(3)分当∠PAE=90°时,当∠APE=90°时,当∠AEP=90°时,三种情况讨论求解即可.【详解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,

若△PBC是等腰三角形,存在以下三种情况:①当BP=BC=4cm时,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四边形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②当PC=BC=4cm时,由勾股定理,即,解得;③当PC=PB时,P在BC的垂直平分线上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,综上所述,当t=1或或时,△PBC是等腰三角形;(3)∵D关于射线CP的对称点是点E,∴PD=PE,∠ECP=∠DCP,由(1)知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论