难点解析-冀教版8年级下册期末试题附完整答案详解(有一套)_第1页
难点解析-冀教版8年级下册期末试题附完整答案详解(有一套)_第2页
难点解析-冀教版8年级下册期末试题附完整答案详解(有一套)_第3页
难点解析-冀教版8年级下册期末试题附完整答案详解(有一套)_第4页
难点解析-冀教版8年级下册期末试题附完整答案详解(有一套)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于()A. B. C. D.2、若点M在第二象限,且点M到x轴的距离为2,到y轴的距离为1,则点M的坐标为()A. B. C. D.3、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为()A.3 B.6 C. D.4、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是()A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=45、如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A. B.8 C. D.6、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为()A.12° B.24° C.39° D.45°7、点与点Q关于y轴对称,则点Q的坐标为()A. B. C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.2、如图,正比例函数y=kx(k≠0)的图像经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为_____.3、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.4、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)5、若y=mx|m﹣1|是正比例函数,则m的值______.6、如图,在矩形ABCD中,,,E、F分别是边AB、BC上的动点,且,M为EF中点,P是边AD上的一个动点,则的最小值是______.7、点A(2,1)关于x轴对称的点B的坐标是______.8、某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是___.三、解答题(7小题,每小题10分,共计70分)1、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°(1)点C坐标为,OC=,△BOC的面积为,=;(2)点C关于x轴的对称点C′的坐标为;(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为,请说明理由;(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.2、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.3、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值.4、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.5、在棋盘中建立如图所示的平面直角坐标系,A、O、B三颗棋子的位置如图所示,它们的坐标分别是,,.(1)如图添加棋子C,使A、O、B、C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴.(2)在其他格点(除点C外)位置添加一颗棋子P,使A、O、B、P四颗棋子成为一个轴对称图形,直接写出棋子P的位置坐标(写出2个即可).6、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.(1)若,请写出与的函数关系式.(2)若,请写出与的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?7、如图,正方形ABCD和正方形CEFG,点G在CD上,AB=5,CE=2,T为AF的中点,求CT的长.-参考答案-一、单选题1、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵,∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD=,即2x•2x=,∴x2=,∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2=,故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.2、C【解析】【分析】根据平面直角坐标系中第二象限内点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值,即可求解.【详解】解:点M在第二象限,且M到轴的距离为2,到y轴的距离为1,点M的横坐标为,点的纵坐标为,点M的坐标为:.故选:C.【点睛】本题考查了平面直角坐标系中点的坐标,熟练掌握坐标系中点的特征是解题的关键.3、B【解析】【分析】连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.【详解】解:连接,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,∵点是AC的中点,∴,∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,∴∴,∴是等边三角形,∴∠BAA'=60°,∴∠ACB=30°,∵AB=3,∴AC=2AB=6,∴.即点B与点之间的距离为6.故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.4、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解:点K为直线l:y=2x+4上一点,设将点K向下平移2个单位,再向左平移a个单位至点K1,将点K1向上平移b个单位,向右平1个单位至点K2,点K2也恰好落在直线l上,整理得:故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.5、A【解析】【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【详解】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD==13,又∵E是边AD的中点,∴OE=AD=×13=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故选:A.【点睛】本题考查了菱形的性质、矩形的判定与性质、直角三角形斜边上中线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.6、C【解析】【分析】由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得,最后根据解题.【详解】解:折叠,是矩形故选:C.【点睛】本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.7、A【解析】【分析】根据关于y轴对称,纵不变,横相反的原理确定即可.【详解】∵关于y轴对称,纵不变,横相反,∴点与点Q关于y轴对称,点Q的坐标为(-3,2),故选A.【点睛】本题考查了坐标系中点的对称问题,熟练掌握对称点坐标的变化规律是解题的关键.二、填空题1、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,,这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和定理与外角和定理,解题的关键是熟练掌握多边形的外角和以及多边形的内角和定理.2、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【详解】解:∵正比例函数y=kx(k≠0)经过点A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO绕点A逆时针旋转90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【点睛】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.4、【解析】【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案为:>.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5、2【解析】【分析】根据次数等于1,且系数不等于零求解即可.【详解】解:由题意得|m-1|=1,且m≠0,解得m=2,故答案为:2.【点睛】本题主要考查了正比例函数的定义,正比例函数的定义是形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.6、11【解析】【分析】作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM+BM最小,从而CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.【详解】如图,作点C关于AD的对称点G,连接PG、GD、BM、GB由对称的性质得:PC=PG,GD=CD∵GP+PM+BM≥BG∴CP+PM=GP+PM≥BG-BM则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM∵四边形ABCD是矩形∴CD=AB=6,∠BCD=∠ABC=90°∴CG=2CD=12∵M为线段EF的中点,且EF=4∴在Rt△BCG中,由勾股定理得:∴GM=BG-BM=13-2=11即CP+PM的最小值为11.【点睛】本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+PM+BM的最小值转化为线段CP+PM的最小值.7、【解析】【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此解答即可.【详解】解:根据轴对称的性质,得点A(2,1)关于x轴对称点A′的坐标是(2,-1),故答案为:(2,-1)【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.8、0.3【解析】【分析】根据各组频率之和为1,可求出答案.【详解】解:由各组频率之和为1得,1-0.2-0.5=0.3,故答案为:0.3.【点睛】本题考查频数和频率,理解“各组频数之和等于样本容量,各组频率之和等于1”是正确解答的前提.三、解答题1、(1)(3,),2,3,(2)(3,−3(3)等边三角形,见解析(4)存在,(0,23)或(0,﹣23)或(2,23【解析】【分析】(1)先根据等角对等边,确定OB=OC=23(2)根据点关于x轴对称的特点,直接写出坐标即可;(3)根据三个角是60°的三角形是等边三角形判定即可;(4)利用全等三角形的判定定理,综合运用分类思想求解.(1)解:(1)∵点B(0,﹣2),∴OB=23∵∠COA=∠OCA=∠OBA=30°,∴OB=OC=23过点C作CD⊥x轴于点D,∴CD=12OC=232=∵点C在第一象限;∴C(3,),∴S△BOC=1∴S△OAC故答案为:(3,),2,3,.(2)∵C(3,),点C与点C'关于x轴对称,∴C'(3,﹣).故答案为:(3,﹣).(3)∵OE⊥OC,∴∠COE=90°,∵∠COA=30°,∴∠AOE=60°,∵∠OAE=60°,∴∠AOE=∠OAB=60°,∴△OAE是等边三角形,故答案为:等边三角形.(4)解:①如图1,当△AOB≌△AOF时,∵OB=23∴OF=23∴F1(0,23),F2②如图2,当△AOB≌OAF时,设直线AB的解析式为y=kx+b,∴3k+b=3解得k=3∴直线AB的解析式为y=x−23,令y=0,得x=2,∴点A的坐标为(2,0),∵△AOB≌OAF,∴OB=AF=23∴F3(2,23),F4(2,﹣2综上所述,存在点F,且点F的坐标是(0,23)或(0,﹣23)或(2,23【点睛】本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.2、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.3、(1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到BP=3x,由勾股定理求出CD,BF,得到DP,由AD2+DP2=AP2,推出y2=3x2−18x+36,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得EF2+BF2=(2EF)2,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF(1)解:ABC中,,,AB=6,∵AC∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴AC=1∴AC=AM=CM,∴△ACM是等边三角形,∴∠C=∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴CD=A在Rt△BEF中,,∴(1∴,又∵BP=2BF,∴BP=3∴DP=33∵AD∴32∴y2∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,∠PEH=2∠PBH=∴EH=1∴PH=P∴AH=AB+BE+EH=6+3∵AH∴(6+3∴y2∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB=120°,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵EF∴EF=3∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵EF∴EF=3∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.4、(1)见解析(2)AE2+GF2=EG2,证明见解析【解析】【分析】(1)根据“SAS”证明△ADE≌△CDE即可;(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,在△ADE和△CDE中,∴△ADE≌△CDE,∴AE=CE;(2)AE2+GF2=EG2,理由:连接CG∵△ADE≌△CDE,∴∠1=∠2.∵G为FH的中点,∴CG=GF=GH=FH,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+GF2=EG2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.5、(1)作图见解析(2)(1,-1)、(0,-1)、(-2,1)(写出2个即可)【解析】【分析】(1)根据A,B,O,C的位置

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论