难点详解四川绵阳南山双语学校7年级数学下册变量之间的关系定向测评试卷(含答案详解版)_第1页
难点详解四川绵阳南山双语学校7年级数学下册变量之间的关系定向测评试卷(含答案详解版)_第2页
难点详解四川绵阳南山双语学校7年级数学下册变量之间的关系定向测评试卷(含答案详解版)_第3页
难点详解四川绵阳南山双语学校7年级数学下册变量之间的关系定向测评试卷(含答案详解版)_第4页
难点详解四川绵阳南山双语学校7年级数学下册变量之间的关系定向测评试卷(含答案详解版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川绵阳南山双语学校7年级数学下册变量之间的关系定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、弹簧挂重物会伸长,测得弹簧长度最长为20cm,与所挂物体重量间有下面的关系.x01234……y88.599.510……下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量 B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加 D.挂30kg物体时一定比原长增加15cm2、如图是某人骑自行车出行的图象,从图象中可以得到的信息是()A.从起点到终点共用了 B.时速度为0C.前速度为 D.与时速度是不相同的3、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量.4、小明到加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量是()金额(元)233.98加油量(升)36.79单价(元/升)6.36A.金额 B.金额和加油量C.单价 D.加油量5、在中,它的底边为,底边上的高为,则面积,若为定长,则此式中().A.,是变量 B.,,是变量 C.,是变量 D.以上都不对6、弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:物体的质量(kg)012345弹簧的长度(cm)1212.51313.51414.5则下列说法错误的是()A.弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B.如果物体的质量为xkg,那么弹簧的长度ycm可以表示为y=12+0.5xC.在弹簧能承受的范围内,当物体的质量为7kg时,弹簧的长度为16cmD.在没挂物体时,弹簧的长度为12cm7、下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对8、下表是某报纸公布的世界人口数据情况:表中的变量()年份19571974198719992010人口数30亿40亿50亿60亿70亿A.仅有一个,是时间(年份) B.仅有一个,是人口数C.有两个,一个是人口数,另一个是时间(年份) D.一个也没有9、如表是加热食用油的温度变化情况:时间油温王红发现,烧了时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是 B.加热,油的温度是C.估计这种食用油的沸点温度约是 D.每加热,油的温度升高10、下列关于圆的面积S与半径R之间的关系式S中,有关常量和变量的说法正确的是()A.S,是变量,是常量 B.S,,R是变量,2是常量C.S,R是变量,是常量 D.S,R是变量,和2是常量第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、鸡蛋每个0.8元,那么所付款(元)与所买鸡蛋个数(个)之间的函数解析式是______.2、根据图中的程序,当输入时,输出的结果________.3、在圆周长公式中,随着的变化而变化,此问题中,______是常量,______和______是变量.4、如图表示的是某种摩托车的油箱中剩余量(升)与摩托车行驶路程(千米)之间的关系.由图象可知,摩托车最多装__升油,可供摩托车行驶___千米,每行驶100千米耗油___升.5、如图,是汽车加油站在加油过程中加油器仪表某一瞬间的显示,(其中数量用x升表示,金额用y元表示,单价用a元/升表示),结合图片信息,请用适当的方式表示加油过程中变量之间的关系为:___________.6、如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为_____.7、若球体体积为,半径为,则.其中变量是_______、_______,常量是________.8、等腰三角形的周长为12cm,底边长为ycm,腰长为xcm.则y与x之间的关系式是________.9、某种储蓄月利率是0.36%,今存入本金100元,则本息和(元)与所存月数(个)之间的函数解析式是______.10、汽车开始行驶时,油箱中有油30升,如果每小时耗油5升,那么油箱中的剩余油量(升)和工作时间(时)之间的函数关系式是____,自变量的取值范围____.三、解答题(6小题,每小题10分,共计60分)1、用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为,它各边上格点的个数之和为.探究一:图中①—④的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数之和的对应关系如表:多边形的序号①②③④…多边形的面积22.534…各边上格点的个数和4568…与之间的关系式为:________.探究二:图中⑤—⑧的格点多边形内部都只有2个格点,请你先完善下表格的空格部分(即分别计算出对应格点多边形的面积):多边形的序号⑤⑥⑦⑧…多边形的面积…各边上格点的个数和4568…与之间的关系式为:________.猜想:当格点多边形内部有且只有个格点时,与之间的关系式为:_______.2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况:(1)什么时间体温最低?什么时间体温最高?最低和最高体温各是多少?(2)一天中小明体温T(单位:℃)的范围是多少.(3)哪段时间小明的体温在上升,哪段时间体温在下降.(4)请你说一说小明一天中体温的变化情况.3、如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,是自变量,是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.4、如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.09米长的链条,需要多少个铁环?5、如图,已知在RtABC中,,点D在斜边AB上,将ABC沿着过点D的一条直线翻折,使点B落在射线BC上的点处,连接并延长,交射线AC于E.(1)当点与点C重合时,求BD的长.(2)当点E在AC的延长线上时,设BD为x,CE为y,求y关于x函数关系式,并写出定义域.(3)连接,当是直角三角形时,请直接写出BD的长.6、下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格购买商品个数(个)2467付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.-参考答案-一、单选题1、D【分析】弹簧长度随所挂物体的重量的变化而变化,由表格数据可知物体每增加,弹簧长度就增加,可以计算当所挂物体为或时弹簧的长度,但应注意弹簧的最大长度为.【详解】解:A.因为弹簧长度随所挂物体的重量的变化而变化,所以是自变量,是因变量.故本选项正确;B.当所挂物体为时,弹簧的长度为.故本选项正确;C.从表格数据中分析可知,物体每增加,弹簧长度就增加.故本选项正确;D.当所挂物体为时,弹簧长度为.故本选项不正确.故选:D【点睛】本题考查了变量、自变量、因变量的概念,认真审题能从题目中抽取出有效信息是解题的关键.2、B【分析】分别根据函数图象的实际意义可依次判断各个选项是否正确.【详解】、从起点到终点共用了,故本选项错误;、时速度为0,故本选项正确;、前的速度是,故本选项错误;、与时速度是相同的,故本选项错误.故选:.【点睛】本题考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.3、D【分析】根据自变量、因变量和常量的定义逐项判断即得答案.【详解】解:A、x是自变量,0.6元/千瓦时是常量,故本选项说法错误,不符合题意;B、y是因变量,x是自变量,故本选项说法错误,不符合题意;C、0.6元/千瓦时是常量,y是因变量,故本选项说法错误,不符合题意;D、x是自变量,y是因变量,0.6元/千瓦时是常量,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了自变量、因变量和常量的定义,属于基础知识题型,熟知概念是关键.4、B【分析】根据常量与变量的定义即可判断.【详解】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着加油量的变化而变化,故选:B.【点睛】本题考查了常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.5、A【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.6、C【分析】根据表格中所给的数据判断即可.【详解】解:A选项,表中的数据涉及到了弹簧的长度及物体的质量,且弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量,故A正确;B选项由表中的数据可知,弹簧的初始长度为12cm,物体的质量每增加1kg,弹簧的长度伸长0.5cm,所以物体的质量为xkg时,弹簧的长度ycm可以表示为y=12+0.5x,B正确;C选项由B中的关系式可知当物体的质量为7kg时,弹簧的长度y为cm,C错误;D选项没挂物体时,即物体的质量为0,此时弹簧的长度为12cm,故D正确.故选:C.【点睛】本题考查了变量之间的关系,灵活的根据表中数据分析两个变量间的关系是解题的关键.7、C【详解】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.8、C【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故正确;故选:.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.9、B【分析】根据题意由表格可知:t=0时,y=10,即没有加热时,油的温度为10;每增加10秒,温度上升20℃,则t=50时,油温度y=110;t=110秒时,温度y=230,以此进行分析判断即可.【详解】解:从表格可知:t=0时,y=10,即没有加热时,油的温度为10;每增加10秒,温度上升20,则50秒时,油温度110;110秒时,温度为,A、C、D均可以得出.故选:B.【点睛】本题考查函数的表示方法,熟练掌握并能够通过表格确定自变量与因变量的变化关系是解题的关键.10、C【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【详解】解:关于圆的面积S与半径R之间的关系式S=πR2中,S、R是变量,π是常量.故选:C.【点睛】本题主要考查了常量和变量,关键是掌握变量和常量的定义.二、填空题1、【分析】根据总价=单价×数量即可列出函数解析式.【详解】∵单价为0.8元,数量为x个,总价为y元.∴.【点睛】本题考查用关系式法表示变量之间的关系.能根据销售问题中的等量关系列出关系式是解决此题的关键.2、2【分析】先对x=3做一个判断,再选择函数解析式,进而代入即可求解.【详解】解:当输入x=3时,因为x>1,所以y=-x+5=-3+5=2.故答案为:2.【点睛】本题实质上是考查了分段函数,应根据x的范围来判断将x=3代入哪一个式子.3、【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量可直接得到答案.【详解】解:根据定义,数值发生变化的量称为变量,数值始终不变的量称为常量,所以在中,是常量,r和C是变量.故答案为:;r;C【点睛】本题考查常量和变量的定义,理解定义是解答此题的关键.4、105002【分析】根据图象可知,当x=0时,对应y的数值就是摩托车最多装多少升油,当y=0时,x的值就是摩托车行驶的千米数;根据摩托车油箱可储油10升,可以行驶500km即可得出每行驶100千米消耗汽油升数.【详解】解:由图象可知,摩托车最多装10升油,可供摩托车行驶500千米,每行驶100千米耗油2升.故答案为:10,500,2.【点睛】此题主要考查了利用函数图象解决问题,从图象上获取正确的信息是解题关键.5、y=6.80x【分析】首先根据题意可知加油过程中的变量为数量和金额,然后根据金额=数量×单价表示即可.【详解】∵加油过程中的变量为数量和金额,金额=数量×单价,,故答案为:.【点睛】本题主要考查函数关系,找到题中的变量是关键.6、S=-6x+48【分析】先表示出新矩形的长,再求其面积.【详解】∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:S=6(8-x).即S=-6x+48.故答案是:S=-6x+48.【点睛】考查了列函数关系式,解题关键是正确表示出新矩形的长,再根据面积公式得到关系式.7、【分析】根据函数常量与变量的知识点作答.【详解】∵函数关系式为,∴是自变量,是因变量,是常量.故答案为:,,.【点睛】本题考查了常量与变量的知识,解题关键是熟记变量是指在程序的运行过程中随时可以发生变化的量.8、【分析】根据三角形的周长公式:底边长=周长-2×腰长可求出底边长与腰的函数关系式.【详解】解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长与腰的函数关系式为:,故答案为:.【点睛】本题考查了根据实际问题列一次函数关系式的知识,同时考查了等腰三角形的性质.9、【分析】根据本金、利息和时间之间的关系,利息=本金×月利率×月数,本息和=本金+利息,即可得出答案.【详解】根据题意,y=100+100×0.36%×x=0.36x+100.故填.【点睛】本题考查用关系式法表示变量之间的关系.能理清题意找出本金、利息和时间之间的关系是解决此题的关键.10、y=30-5x0≤x≤6【分析】油箱内剩余油量=原有的油量-x小时消耗的油量,可列出函数关系式;根据每小时耗油量可求出可行驶的时间,即可得出自变量的取值范围.【详解】∵油箱中有油30升,每小时耗油5升,工作时间为x,∴油箱内剩余油量y=30-5x,30÷5=6,∴可行驶6小时,∴自变量的取值范围为0≤x≤6,故答案为:y=30-5x,0≤x≤6【点睛】本题主要考查了由实际问题抽象出一次函数,本题关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.三、解答题1、探究一:;探究二:完整的表格信息见详解,;猜想:.【分析】探究一:通过观察可以看出多边形的面积等于各边上格点个数的一半,即;探究二:用“切割法”将⑤—⑧中图形分割成几个三角形或者矩形即可求出其面积,通过观察可以发现多边形的面积等于各边上格点的个数和的一半加1,即,猜想:观察可发现⑤—⑧多边形内部都有2个格点,面积在探究一的基础上加1,结合探究一、二可得出解析式【详解】探究一:当S=2时,x=4;当S=2.5时,x=5;…..通过观察多边形的面积等于各边上格点个数的一半,即;探究二:表格填写如下多边形的序号⑤⑥⑦⑧…多边形的面积33.545…各边上格点的个数和4568…通过观察可以发现多边形的面积等于各边上格点个数的一半再加1,即;猜想:比较探究二与探究一,图形面积加1,图形内部格点个数加2,也就是多边形内部格点数每增加n个,面积就比原来多了n-1,故S与x的关系式为.【点睛】本题主要考查变量之间的关系中的用表格表示变量之间的关系和用关系式表示变量之间的关系,解答本题的关键是要理解原图(表格)的变化规律,然后将它用关系式表示出来.2、(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)见解析【分析】(1)根据图象进行作答即可;(2)根据图象进行作答即可;(3)根据图象进行作答即可;(4)根据图象进行作答即可.【详解】(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)凌晨0至5时,小明体温在下降,5时体温最低是36.5℃;5至17时,小明体温在上升,17时体温最高是37.5℃;17至24时,小明体温在下降.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.3、(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对.【详解】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=千米/小时,乙的速度是100÷3=千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对.考点:函数的图象.4、(1)2个铁环组成的链条长,3个铁环组成的链条长为,4个铁环组成的链条长;(2);(3)需要61个铁环【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y与n的关系式;(3)由(2)得,3.4n+1.6=209,进而求出即可.【详解】解:(1)由题意可得:,,.故2个铁环组成的链条长,3个铁环组成的链条长为,4个铁环组成的链条长;(2)由题意得:n个铁环一共有n-1个相接的地方,∴,即;(3)∵2.09米∴据题意有,解得:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论