




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,阴影部分是将一个菱形剪去一个平行四边形后剩下的,要想知道阴影部分的周长,需要测量一些线段的长,这些线段可以是()A.AF B.AB C.AB与BC D.BC与CD2、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A.2 B.4 C.4或 D.2或3、如图,在△ABC中,点E,F分别是AB,AC的中点.已知∠B=55°,则∠AEF的度数是()A.75° B.60° C.55° D.40°4、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是()A. B. C. D.545、如图所示,AB=CD,AD=BC,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为_____.2、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是_____.3、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF的长为___.4、如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若,则CF的长为_____.5、如图,△ABC中,D、E分别是AB、AC的中点,若DE=4cm,则BC=_____cm.三、解答题(5小题,每小题10分,共计50分)1、阅读探究小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,(1)图1中的面积为________.实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个的正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为,,的格点.②的面积为________(写出计算过程).拓展延伸(3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空).2、在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段.点A固定在格点上.(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a=,b=,=;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为,.3、如图,在等腰三角形ABC中,AB=BC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F.(1)求证:BCF;(2)当C=a时,判定四边形的形状并说明理由.4、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知.写出各点的坐标:A(,),B(,),C(,).(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.①若的一条边与BC平行,求此时点M的坐标;②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.5、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.-参考答案-一、单选题1、A【解析】【分析】如图,延长,交于点,证明,,再利用菱形的性质证明:阴影部分的周长,从而可得答案.【详解】解:如图,延长,交于点,四边形是平行四边形,,,四边形是菱形,,阴影部分的周长,故需要测量的长度,故选A.【点睛】本题考查的是平行四边形的性质,菱形的性质,证明阴影部分的周长是解本题的关键.2、D【解析】【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP时,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故选:D.【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.3、C【解析】【分析】证EF是△ABC的中位线,得EF∥BC,再由平行线的性质即可求解.【详解】解:∵点E,F分别是AB,AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=55°,故选:C.【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EF∥BC是解题的关键.4、C【解析】【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.【详解】如图,过点F作,分别交于M、N,∵四边形ABCD是矩形,∴,,∵点E是BC的中点,∴,∵F是AE中点,∴,∴.故选:C.【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.5、D【解析】【分析】根据平行四边形的判定与性质,求解即可.【详解】解:∵AB=CD,AD=BC∴四边形为平行四边形∴,,,∴、又∵,∴、∴图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质.二、填空题1、##【解析】【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:,,,,∴∠ABC=90°,∵点D为AC的中点,∴BD为AC边上的中线,∴BD=AC,故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.2、【解析】【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设,四边形为正方形,,,点为的中点,,,,,四边形为正方形,,,故答案为:.【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.3、3.6【解析】【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【详解】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE=,∴BH=,则BF=,∵点E为BC的中点,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案为:3.6.【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4、【解析】【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x的方程,求解x即可.【详解】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案为:6-2.【点睛】本题主要考查了正方形的性质及翻转折叠的性质,勾股定理,拓展一元一次方程,准确运用题目中的条件表示出EF列出方程式解题的关键.5、8【解析】【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,D、E分别是AB、AC的中点∴DE是△ABC的中位线,∴BC=2DE=8cm.故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.三、解答题1、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.【分析】(1)根据网格可直接用割补法求解三角形的面积;(2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.【详解】解:(1)△ABC的面积为:,故答案为:;(2)①作图如下(答案不唯一):②的面积为:,故答案为:8;(3)在网格中作出,,在与中,,∴,∴,,六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积,故答案为:31.【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.2、(1),2,;(2)4或5.【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可.【详解】解:(1)由题意得:a=,b=2,
∴;
故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求.
菱形ABCD的面积为=×4×2=4或菱形ABCD的面积=×=5,
故答案为:4或5.【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题.3、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;
(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通过证明∠FBC=∠可得BC,利用∠EC=∠C=180°推出∠EC+∠=180°得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形.【详解】(1)证明:∵等腰三角形ABC旋转角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠CB=B=AB=BC∴BCF(ASA)(2)解:四边形为菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=aB=B=AB=BC又∵∠BD=∠FBC=a∴∠FBC=∠∴BC∴∠EC=∠C=180°∴∠EC+∠=180°∴BCE∴四边形为平行四边形又∵B=BC∴四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.4、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】(1)设,,,则,由勾股定理求出,即可得出结论;(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;(3)①分当时,;当时,;得出方程,解方程即可;②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.【详解】解:(1)证明:设,,,则,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),故答案为:12,0;-8,0;0,16;(3)①如图3-1所示,当MN∥BC时,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M为AB的中点,∵,∴,∴,∴点M的坐标为(2,0);如图3-2所示,当ON∥BC时,同理可得,∴,∴M点的坐标为(4,0);∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,∵E是AC的中点,∠AOC=90°,,∴,∴此时M的坐标为(0,10);如图3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装定制工厂合同范本
- 餐饮商业租房合同范本
- 半包合同范本首页
- 油田物资合同范本
- 基础钻孔开挖合同范本
- 恐龙展品租赁合同范本
- 社区应急知识培训课件图片
- 产品试用合同范本简约
- 草坪承包项目合同范本
- 外贸家具类合同范本
- 节日期间纪检监督检查记录表
- GB/T 311.1-2012绝缘配合第1部分:定义、原则和规则
- (完整word)600习题《工会基础知识试题及答案》2020.1.6
- 中医药法宣讲余课件
- 富士康科技集团劳保用品采购
- 2022年家用空调安装合同范本
- 二手车鉴定评估的报告书
- 多智能体系统教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案课件合集
- 艺术欣赏完整版课件全套ppt教程(最新)
- 有限空间作业考试题库600题含答案
- 建筑工程钢筋抽料知识总结
评论
0/150
提交评论