




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣ D.y=x2﹣12、当0x3,函数y=﹣x2+4x+5的最大值与最小值分别是()A.9,5 B.8,5 C.9,8 D.8,43、反比例函数图象的两个分支分别位于第一、三象限,则一次函数的图象大致是(
)A. B.C. D.4、如图所示,双曲线y=上有一动点A,连接OA,以O为顶点、OA为直角边,构造等腰直角三角形OAB,则△OAB面积的最小值为(
)A. B. C.2 D.25、如图,D,E分别是△ABC的边AB,AC上的点,连接DE,下列条件不能判定△ADE与△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.6、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是(
)A.或2 B. C.2 D.二、多选题(7小题,每小题2分,共计14分)1、如图,的顶点位于正方形网格的格点上,若,则满足条件的是(
)A. B.C. D.2、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()A.b2﹣4ac<0B.当x>﹣1时,y随x增大而减小C.a+b+c<0D.若方程ax2+bx+c-m=0没有实数根,则m>2E.3a+c<03、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、如图所示是△ABC位似图形的几种画法,正确的是()A. B.C. D.5、如图,在△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD交CB的延长线于点E.下列结论不正确的是(
)A.△AED∽△ACB B.△AEB∽△ACDC.△BAE∽△ACE D.△AEC∽△DAC6、如图,在△EFG中,∠EFG=90°,FH⊥EG,下面等式中正确的是(
)A. B.C. D.7、在Rt△ABC中,∠C=90°,下列式子一定成立的是(
)A.sinA=sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、已知函数y=(2﹣k)x2+kx+1是二次函数,则k满足__.2、如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,直线DE是⊙O的切线,切点为D,交AC于E,若⊙O半径为1,BC=4,则图中阴影部分的面积为_____.3、已知抛物线与x轴的一个交点为,则代数式的值为______.4、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=_______cm.5、如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为_____.6、如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上动点(点M不与A,B重合),且MQ⊥BC,MN∥BC交AC于点N.联结NQ,设BQ=x.则当x=_____.时,四边形BMNQ的面积最大值为_______.7、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.四、解答题(6小题,每小题10分,共计60分)1、(1)计算×cos45°﹣()﹣1+20180;(2)解方程组2、某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?3、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.4、如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值小于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,在x轴上是否存在点P,使S△OCP=S四边形OABC?若存在,请求出P点的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB=6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线经过G上一点,求k的最大值.6、如图,为了测量一栋楼的高度,小明同学先在操场上处放一面镜子,向后退到处,恰好在镜子中看到楼的顶部;再将镜子放到处,然后后退到处,恰好再次在镜子中看到楼的顶部(在同一条直线上),测得,如果小明眼睛距地面高度,为,试确定楼的高度.-参考答案-一、单选题1、C【解析】【分析】根据反比例函数的定义逐一判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【考点】本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.2、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答.【详解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键.3、D【解析】【分析】根据题意可得,进而根据一次函数图像的性质可得的图象的大致情况.【详解】反比例函数图象的两个分支分别位于第一、三象限,∴一次函数的图象与y轴交于负半轴,且经过第一、三、四象限.观察选项只有D选项符合.故选D【考点】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得是解题的关键.4、C【解析】【分析】根据等腰直角三角形性质得出S△OAB=OA•OB=OA2,先求得OA取最小值时A的坐标,即可求得OA的长,从而求得△OAB面积的最小值.【详解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA•OB=OA2,∴OA取最小值时,△OAB面积的值最小,∵当直线OA为y=x时,OA最小,解得或,∴此时A的坐标为(,),∴OA=2,∴,∴△OAB面积的最小值为2,故选:C.【考点】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,三角形的面积,求得OA取最小值时A的坐标是解题的关键.5、D【解析】【分析】根据相似三角形的判定定理逐个分析判断即可.【详解】解:∵∠ADE=∠B,∴故A能判定△ADE与△ABC相似,不符合题意;∠AED=∠C,∴故B能判定△ADE与△ABC相似,不符合题意;,∴故C能判定△ADE与△ABC相似,不符合题意;,条件未给出,不能判定△ADE与△ABC相似,故D符合题意故选D【考点】本题考查了相似三角形的判定定理,掌握相似三角形的判定定理是解题的关键.6、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,∵得到的抛物线正好经过坐标原点∴+1即解得:或∵抛物线的对称轴在轴右侧∴>0∴<0∴故选:B.【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.二、多选题1、AD【解析】【分析】根据在直角三角形中一个角的正切值等于其所对的边与斜边的比值进行构造直角三角形求解判断即可.【详解】解:A、如图所示,,∴,故此选项符合题意;B、如图所示,,∴,故此选项不符合题意;C、如图所示,,∴,故此选项不符合题意;D、如图所示,,,BD⊥AC,∴,∴,∴∴,故此选项符合题意;故选AD.【考点】本题主要考查了求正切值和勾股定理,解题的关键在于能够构造直角三角形进行求解.2、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断.【详解】∵二次函数与x轴有两个交点,∴b²-4ac>0,故A错误,观察图象可知:当x>-1时,y随x增大而减小,故B正确,∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,∴x=1时,y=a+b+c<0,故C正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax²+bx+c-m=0没有实数根,故D正确,∵对称轴x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正确,故答案为BCDE.【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.4、ABCD【解析】【分析】利用位似图形的画法:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.【详解】解:第一个图形中的位似中心为A点,第二个图形中的位似中心为BC上的一点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:ABCD.【考点】本题主要考查了位似变换,正确把握位似图形的定义是解题关键.5、ABD【解析】【分析】先利用直角三角形斜边上的中线等于斜边的一半得到DA=DC,则∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,从而有∠EAB=∠C,再加上公共角即可判断△BAE∽△ACE.【详解】解:∵∠BAC=90°,D是BC中点,∴DA=DC,∴∠DAC=∠C,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,∴∠EAB=∠DAC,∴∠EAB=∠C,而∠E是公共角,∴△BAE∽△ACE∴C选项正确,ABD选项错误,故选ABD.【考点】此题主要考查学生对相似三角形判定定理的掌握和应用.6、ABD【解析】【分析】先根据同角的余角相等得出∠G=∠EFH,再根据三角函数的定义求解即可.【详解】解:∵在△EFG中,∠EFG=90°,FH⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以选项A、B、D都是正确的,故选:ABD.【考点】本题利用了同角的余角相等和锐角三角函数的定义解答,属较简单题目.7、BCD【解析】【分析】根据互为余角的三角函数关系,可判断A、B、C;根据直角三角形的性质,可判断D.【详解】解:∵∠C=90°,∴∠A+∠B=90°,A、A≠B时,sinA≠sinB,故A错误;B、∵∠A+∠B=90°,∴cosA=sinB,故B正确;C、∵∠A+∠B=90°,∴sinA=cosB,故C正确;D、∵∠C=90°,∴∠A+∠B=90°,故D正确;故选:BCD.【考点】本题考查了互余两角三角函数的关系,熟记同角(或余角)的三角函数关系式是解题的关键.三、填空题1、k≠2【解析】【分析】利用二次函数定义可得2﹣k≠0,再解不等式即可.【详解】解:由题意得:2﹣k≠0,解得:k≠2,故答案为:k≠2.【考点】本题主要考查了二次函数的定义,准确分析计算是解题的关键.2、【解析】【分析】连接OD、OE、AD,AD交OE于F,如图,根据切线的性质得到∠BAC=90°,利用余弦的定义可计算出∠B=60°,则根据圆周角定理得到∠ADB=90°,∠AOD=120°,于是可计算出BD=1,AD=,接着证明△ADE为等边三角形,求出OF=,根据扇形的面积公式,利用S阴影部分=S四边形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD进行计算.【详解】解:连接OD、OE、AD,AD交OE于F,如图,∵AC是⊙O的切线,切点为A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直线DE、EA都是⊙O的切线,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE为等边三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S阴影部分=S四边形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案为.【考点】本题考查圆的切线,圆周角定理,扇形面积公式,锐角三角函数求角,30°角直角三角形的性质,掌握和运用圆的切线,圆周角定理,扇形面积公式,锐角三角函数求角,30°角直角三角形的性质是解题关键.3、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案为:2019.【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.4、4.5【解析】【分析】由三角形的重心的性质即可得出答案.【详解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中线,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案为:4.5.【考点】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到对边中点距离的两倍.5、m>1【解析】【分析】直接利用二次函数的性质得出m-1的取值范围进而得出答案.【详解】解:∵抛物线y=(m-1)x2有最低点,∴m-1>0,解得:m>1.故答案为m>1.【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键.6、
【解析】【分析】先由勾股数可得BC的长,再由△QBM∽△ABC列出比例式,用含x的式子表示出QM和BM,然后由平行线的性质得比例式,解出MN,最后由三角形的面积公式得出四边形BMNQ的面积表达式,根据二次函数的性质可得答案.【详解】解:∵∠A=90°,AB=3,AC=4,∴BC=5,∵△QBM∽△ABC,∴==,即==,∴QM=x,BM=x,∵MN∥BC,∴=,即=,∴MN=5﹣x,∴四边形BMNQ的面积为:,∴当x=时,四边形BMNQ的面积最大,最大值为.故答案为:,.【考点】本题主要考查了二次函数的性质、相似三角形及勾股定理,关键是根据勾股定理求出线段的长,然后根据相似三角形得到比例列出函数关系式,最后用二次函数的性质求解即可.7、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.四、解答题1、(1)1;(2)【解析】【分析】(1)先化简二次根式、代入特殊角的三角函数值、计算负整数指数幂和零指数幂,再计算乘法和加减运算可得;(2)利用加减消元法求解可得.【详解】(1)原式=3-3+1=3﹣3+1=1;(2)①+②×3,得:10x=20,解得:x=2,把x=2代入①,得:6+y=1,解得:y=1,∴原方程组的解为.【考点】本题考查了实数的混合运算与二元一次方程组的解法.涉及了二次根式的化简、特殊角的三角函数值、0次幂与负指数幂的运算、加减消元法解二元一次方程组,熟练掌握相关的运算法则以及解题方法是解题的关键.2、(1)y=-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润=(售价﹣进价)×销量”列出函数表达式即可.(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值.【详解】解:(1)根据题意,y=300﹣10(x﹣60)=-10x+900,∴y与x的函数表达式为:y=-10x+900;(2)设利润为w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件销售价为70元时,获得最大利润;最大利润为4000元.【考点】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.3、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y轴于M,如图,利用直线解析式确定A(0,2),B(﹣2,0),再根据平行线分线段成比例定理求出MC=4,AM=4,则C(4,6),然后把C点坐标代入y=中求出k得到反比例函数解析式;(2)MC交直线DE于N,如图,证明△CND为等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D点坐标.【详解】解:(1)作CM⊥y轴于M,如图,当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=﹣2,则B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函数解析式为y=;(2)MC交直线DE于N,如图,∵MC=MA,∴△MAC为等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND为等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考点】本题是反比例函数与一次函数的综合题,涉及到待定系数法求函数解析式、平行线分线段成比例定理、等腰三角形的性质,有一定的难度4、(1);(2)或;(3)在x轴上是否存在点P,见解析.【解析】【分析】(1)设反比例函数的解析式为y=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式;(2)直接由图象得出正比例函数值小于反比例函数值时自变量x的取值范围;(3)首先证明四边形OABC是菱形,然后求出AC、OB的长度,计算出菱形OABC的面积,从而得到△OCP的面积,列方程求解即可..【详解】解:(1)设反比例函数的解析式为y=(k>0),∵A(m,−2)在y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院门诊部个人工作总结
- 2025广东广州市公安局越秀区分局招聘辅警50人模拟试卷及1套完整答案详解
- 2025年灶具油烟机项目发展计划
- 2025年鹤壁市面向社会招聘看护队员30名模拟试卷及1套完整答案详解
- 合作协议书汇编6篇
- 初二周记范文汇编八篇
- 2025昆明市禄劝县人民法院司法协警招录(2人)模拟试卷及答案详解(易错题)
- 2025福建亿力集团有限公司所属单位招聘98人模拟试卷及一套完整答案详解
- 2025安徽芜湖经济技术开发区公办幼儿园招聘26人模拟试卷参考答案详解
- 2025年机关单位餐饮项目发展计划
- 2025版学校空调设备维保与绿色校园建设合同范本3篇
- 小学五年级语文阅读理解考场答题技巧方法公式步骤复习课件
- 第5章-身份认证-电子课件
- 浙江省绍兴市越城区绍兴市第一初级中学2024-2025学年九年级上学期10月月考科学试题
- 食材采购协议书
- 社区网格员笔试考试题库及答案
- 手术室植入物
- DL T 5745-2016 电力建设工程工程量清单计价规范
- 放射治疗放射防护要求
- 弘扬抗洪精神抗洪救灾主题班会课件
- 【新高教版中职数学基础模块上册PPT】2.2区间
评论
0/150
提交评论