难点解析广东广州市广大附中7年级数学下册变量之间的关系定向练习试题(解析版)_第1页
难点解析广东广州市广大附中7年级数学下册变量之间的关系定向练习试题(解析版)_第2页
难点解析广东广州市广大附中7年级数学下册变量之间的关系定向练习试题(解析版)_第3页
难点解析广东广州市广大附中7年级数学下册变量之间的关系定向练习试题(解析版)_第4页
难点解析广东广州市广大附中7年级数学下册变量之间的关系定向练习试题(解析版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东广州市广大附中7年级数学下册变量之间的关系定向练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量 B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量 D.C为变量,2、π、R为常量2、如图,李大爷用米长的篱笆靠墙围成一个矩形菜园,若菜园靠墙的一边长为(米),那么菜园的面积(平方米)与的关系式为()A. B. C. D.3、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量.4、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x5、一个容器中装有一定质量的糖,向容器中加入水,随着水量的增加,糖水的浓度将降低,这个问题中自变量和因变量分别是()A.糖,糖水的浓度 B.水,糖水 C.糖,糖水 D.水,糖水的浓度6、某电影放映厅周六放映一部电影,当天的场次、售票量、售票收入的变化情况如表所示.在该变化过程中,常量是()场次售票量(张)售票收入(元)15020002100400031506000415060005150600061506000A.场次 B.售票量 C.票价 D.售票收入7、小李骑车沿直线旅行,先前进了1000米,休息了一段时间,又原路返回800米,再前进1200米,则他离起点的距离与时间的关系示意图是()A. B. C. D.8、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。设行进时间为t(单位:min),行进的路程为s(单位:m),则能近似刻画s与t之间的函数关系的大致图象是()A. B.C. D.9、梦想从学习开始,事业从实践起步近来,每天登录“学习强国”APP,则下列说法错误的是()学习天数n(天)1234567周积分w/(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.周积分w与学习天数n的关系式为D.天数每增加1天,周积分的增长量不一定相同10、下表是研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x(kg)12345弹簧长度y(cm)1012141618则弹簧不挂物体时的长度为().A.4cm B.6cm C.8cm D.10cm第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.2、如图所示的程序是一种数值转换程序,当输入的x值为1.5时,输出的y值为________.3、直角三角形两锐角的度数分别为,,其关系式为,其中变量为________,常量为________.4、已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=时,x的值等于_____________.5、地面温度为15ºC,如果高度每升高1千米,气温下降6ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________6、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份201520162017…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量;(2)你预计该地区从_____年起入学儿童的人数不超过2000人.7、如图所示,在三角形中,已知,高,动点由点沿向点移动不与点重合设的长为,三角形的面积为,则与之间的关系式为___________________.8、小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______9、声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y随温度x的升高而_____.在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.10、刹车距离与刹车时的速度有如下关系:,小李以的速度行驶在路上.突然发现前方8m处有个水沟,小李马上踩下刹车(忽略反应时间),问是否来得及________(填“是”或“否”).三、解答题(6小题,每小题10分,共计60分)1、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm)1.62.02.42.83.23.64.0用铝量y(cm3)6.96.05.65.55.76.06.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况:(1)什么时间体温最低?什么时间体温最高?最低和最高体温各是多少?(2)一天中小明体温T(单位:℃)的范围是多少.(3)哪段时间小明的体温在上升,哪段时间体温在下降.(4)请你说一说小明一天中体温的变化情况.3、如图,长方形ABCD的边长分别为AB=12cm,AD=8cm,点P、Q从点A出发,P沿线段AB运动,点Q沿线段AD运动(其中一点停止运动,另一点也随着停止),设AP=AQ=xcm在这个变化过程中,图中阴影部分的面积y(cm2)也随之变化.(1)写出y与x的关系式(2)当AP由2cm变到8cm,图中阴影部分的面积y是如何变化的?请说明理由4、某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB、OB分别表示父子俩送票、取票过程中离体育馆的路程与所用时间之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O点表示________;A点表示________;B点表示________.(2)从图中可知,小明家离体育馆________m,父子俩在出发后________相遇.(3)你能求出父亲与小明相遇时距离体育馆还有多远?(4)小明能否在比赛开始之前赶回体育馆?5、研究表明,温度对生猪词养有一定的影响.下图是某生猪饲养场查阅的下周天气预报情况,根据图中信息回答下列问题:(1)周二的最高气温与最低气温分别是多少?(2)图中点A表示的实际意义是什么?(3)当一天内的温差超过12C时,生猪可能出现生理异常.为了预防生猪生理异常,养殖场需要在哪几天进行人工调节温度?6、光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?-参考答案-一、单选题1、B【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.2、C【分析】根据篱笆长可得2AB+x=24,先表示出矩形的长,再由矩形的面积公式就可以得出结论.【详解】解:由题意得:2AB+x=24,∴AB=;∴故选:C【点睛】此题考查了根据实际问题列函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.3、D【分析】根据自变量、因变量和常量的定义逐项判断即得答案.【详解】解:A、x是自变量,0.6元/千瓦时是常量,故本选项说法错误,不符合题意;B、y是因变量,x是自变量,故本选项说法错误,不符合题意;C、0.6元/千瓦时是常量,y是因变量,故本选项说法错误,不符合题意;D、x是自变量,y是因变量,0.6元/千瓦时是常量,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了自变量、因变量和常量的定义,属于基础知识题型,熟知概念是关键.4、D【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.5、D【分析】根据对浓度的认识解答本题,糖的质量不变,加的水越多,糖水的浓度度越小,糖水的浓度随着加入水的变化而变化,据此解答即可.【详解】解:随着水的加入,糖水浓度变小,自变量是加入的水量,因变量是糖水的浓度.故选:D.【点睛】此题考查的是常量与变量的概念,掌握其概念是解决此题的关键.6、C【分析】根据表格可知,场次、售票量、售票收入中,不变的量是票价,进而根据函数的定义可知票价是常量.【详解】根据表格数据可知,不变的量是票价,则常量是票价.故选C.【点睛】本题考查了函数的定义,掌握常量是不变的量是解题的关键.7、C【分析】根据休息时,离开起点的S不变,返回时S变小,再前进时S逐渐变大得出函数图象,然后选择即可.【详解】解:前进了1000米图象为一条线段,休息了一段时间,离开起点的不变,又原路返回800米,离开起点的变小,再前进1200米,离开起点的逐渐变大,纵观各选项图象,只有选项符合.故选:.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.8、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案.【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键.9、C【分析】根据表格中的信息逐项判断即可.【详解】解:根据表格可知:周积分w/(分)随着学习天数n(天)的变化而变化,并且n越大,w越大,故选项A、B正确,不符合题意;并不符合所有的,如当n=1时,w=55,不符合关系式,故C错误,符合题意;从第1天到第2天周积分增加55分,第2天到第3天周积分增加50分,第3天到第4天周积分增加40分,第4天到第5天周积分增加54分,第5天到第6天周积分增加46分,第6天到第7天周积分增加50分,故D正确,不符合题意.故选:C.【点睛】本题主要考查了函数中的变量,函数解析式,熟练掌握函数的基础知识是解题的关键.10、C【分析】根据表格数据,设弹簧长度y与所挂物体重量x的关系式为,进而求得关系式,令即可求得弹簧不挂物体时的长度.【详解】设弹簧长度y与所挂物体重量x的关系式为,将,分别代入得,解得即,将,分别代入,符合关系式,当时,则,故选C.【点睛】本题考查了变量与表格,函数关系式,找到关系式是解题的关键.二、填空题1、【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;故答案为y=23-0.007x.【点睛】本题考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.2、0.5【分析】先根据x的取值确定x的范围,从而得出需要代入的函数关系式,然后代入计算即可.【详解】解:因为x=1.5满足:,所以把x=1.5代入,得:.故答案为:0.5.【点睛】本题考查了用关系式表示变量之间的关系以及因变量的求值,属于常见题型,读懂题意、弄清需要代入的函数关系式是解题关键.3、x,y-1,90【分析】根据在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,即可解答.【详解】关系式中,变量为:x,y,常量为:-1,90,故答案为:x,y;-1,90.【点睛】本题考查常量与变量的认识,熟记基本定义是解题关键.4、或【分析】根据点的运动轨迹,分析出当在或上均有可能,再根据的面积为分类讨论计算即可.【详解】(1)当在上时,如图:∴(2)当在上时,如图:∴故答案为:或【点睛】本题考查动点问题与三角形面积求算,不规则图形面积求算通常采用割补法,同时注意分类讨论.5、h=.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.6、年份,入学儿童人数2018.【解析】【分析】(1)根据两个变量:年份和入学儿童人数和表中的变化趋势即可得出答案.(2)先根据表中的数据得出,每年的入学儿童人数都比上一年减少190人,2015年的入学儿童人数减去2000的差除以190即可.【详解】解:(1)因为该表格中的数据近似地呈现了某地区入学儿童人数随年份的变化趋势,所以年份是自变量,入学儿童人数是因变量;故答案为年份,入学儿童人数(2)因为每年的入学儿童人数都比上一年减少190人,∴(2520-2000)÷190,2015+3=2018(年)所以2018年起入学儿童的人数不超过2000人.故答案为2018【点睛】本题考查了函数的定义,和简单的求值问题,分析表中数据的变化规律是解题的关键.7、【分析】根据三角形的面积公式可知,由此求解即可.【详解】∵AD是△ABC中BC边上的高,CQ的长为x,∴,∴.故答案为:.【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式.8、金额与数量【解析】【分析】根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.【详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故答案为:金额与数量.【点睛】本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.9、增大;68.6.【分析】从表格可以看到y随x的增大而增大;20℃时,音速为343米/秒,距离为343×0.2=68.6米.【详解】从表格可以看到y随x的增大而增大;20℃时,音速为343米/秒,343×0.2=68.6米,这个人距离发令点68.6米;故答案为:增大;68.6.【点睛】本题考查变量之间的关系,函数的表示方法;能够通过表格观察出变量的变化关系,利用表格的数据计算距离是解题的关键.10、否【分析】把v=先换算单位为10m/s,再代入函数关系式即可求出s的值,然后与8米作比较即得答案.【详解】解:当v==10m/s时,,所以他来不及踩下刹车.故答案为:否.【点睛】本题考查了已知自变量求因变量的值,属于基本计算题,先换算单位、再准确计算是解题关键.三、解答题1、(1)反映了易拉罐底面半径和用铝量的关系,其中,易拉罐底面半径为自变量,用铝量为因变量;(2)易拉罐需要的用铝量为5.6cm3;(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝量较少,成本低.【分析】(1)用铝量是随底面半径的变化而变化的,因而底面半径为自变量,用铝量为因变量;(2)根据表格可以直接得到;(3)选择用铝量最小的一个即可;【详解】(1)反映了易拉罐底面半径和用铝量的关系,其中,易拉罐底面半径为自变量,用铝量为因变量.(2)当底面半径为2.4cm时,易拉罐需要的用铝量为5.6cm3.(3)易拉罐底面半径为2.8cm时比较合适,因为此时用铝量较少,成本低.【点睛】本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键.2、(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)见解析【分析】(1)根据图象进行作答即可;(2)根据图象进行作答即可;(3)根据图象进行作答即可;(4)根据图象进行作答即可.【详解】(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)凌晨0至5时,小明体温在下降,5时体温最低是36.5℃;5至17时,小明体温在上升,17时体温最高是37.5℃;17至24时,小明体温在下降.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.3、(1);(2)y由变到,理由见详解.【分析】(1)表示出的面积,用长方形的面积减去的面积可得y与x的关系式;(2)当AP由2cm变到8cm,由(1)中y与x的关系式计算出相应的y的值,可知其变化.【详解】解:(1),长方形的面积为,所以;(2)当AP等于2cm时,即时,,当AP等于8cm时,即时,,所以当AP由2cm变到8cm,图中阴影部分的面积y由变到.【点睛】本题考查了和动点有关的图形的面积,灵活的表示出阴影部分的面积是解题的关键.4、(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间==5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB、OB分别表示父、子送票、取票过程,∴O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)∵O点与A点相距3600米,∴小明家离体育馆有3600米,∵从点O点到点B用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B点到O点的速度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论