




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省北安市中考数学真题分类(平行线的证明)汇编难点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,EF与的边BC,AC相交,则与的大小关系为(
).A. B.C. D.大小关系取决于的度数2、如图,平面上直线a、b分别经过线段OK的两个端点,则直线a、b相交所成的锐角的度数是(
)A.20° B.30°C.70° D.80°3、如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为(
)A.15°或20° B.20°或30° C.15°或30° D.15°或25°4、在中,若一个内角等于另外两个角的差,则(
)A.必有一个角等于 B.必有一个角等于C.必有一个角等于 D.必有一个角等于5、在中,,则为(
)三角形.A.锐角 B.直角 C.钝角 D.等腰6、如图:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,则下列说法正确的有几个(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2个 B.3个 C.4个 D.57、如图,在△ABC中,∠A=30°,∠B=50°,将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,则∠NCF的度数为(
).A.22° B.21° C.20° D.19°8、如图,若,,则:①;②;③平分;④;⑤,其中正确的结论是A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为__.2、如图,已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是___________.3、如图,△ABC的外角∠DBC、∠ECB的角平分线交于点M,∠ACB的角平分线与BM的反向延长线交于点N,若在△CMN中存在一个内角等于另一个内角的2倍,则∠A的度数为_______4、如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是;5、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.6、如图,点D是△ABC两条角平分线AP、CE的交点,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.7、如图,将三角形纸片ABC按如图方式折叠:折痕分别为DC和DE,点A与BC边上的点G重合,点B与DG延长线上的点F重合.若满足∠ACB=40°,则∠CEF=_______度.三、解答题(7小题,每小题10分,共计70分)1、如图,已知,.(1)试判断BF与DE的位置关系,并说明理由;(2)若,,求的度数.2、如图,△ABC中,E是AB上一点,过D作DEBC交AB于E点,F是BC上一点,连接DF.若∠AED=∠1.(1)求证:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度数.3、如图,,.(1)试说明;(2)若,且,求的度数.4、指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.5、如图,在中,,,AD是的角平分线,求的度数.6、如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.7、用反证法证明:一个三角形中不能有两个角是直角.-参考答案-一、单选题1、C【解析】【分析】根据对顶角相等和三角形的内角和定理即可得结论.【详解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故选:C【考点】本题主要考查对顶角的性质和三角形的内角和定理,掌握对顶角的性质和三角形的内角和定理是解题的关键.2、B【解析】【分析】根据三角形的外角的性质列式计算即可.【详解】解:如图:由三角形的外角的性质可知,∠OFK+70°=100°,解得,∠OFK=30°,故选B.【考点】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3、C【解析】【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【详解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【考点】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.4、D【解析】【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【考点】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.5、B【解析】【分析】根据分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.【详解】∵∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.【考点】本题主要考查的是三角形的基本概念.6、B【解析】【分析】过点E作EF⊥AD垂足为点F,证明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,证明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【详解】解:如图,过点E作EF⊥AD,垂足为点F,可得∠DFE=90°,则∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中点,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故结论(1)正确,则AD=AF+DF=AB+CD,故结论(3)正确;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故结论(4)正确.∵AB≠CD,AE≠DE,(5)错误,∴△EBA≌△DCE不可能成立,故结论(2)错误.综上所知正确的结论有3个.故答案为:B.【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键.7、C【解析】【分析】根据三角形的内角和定理可得∠ACB=100°,再由折叠的性质可得∠ACN=∠A=30°,∠FCE=∠B=50°,即可求解.【详解】解:∵∠A=30°,∠B=50°,∴∠ACB=100°,∵将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,∴∠ACN=∠A=30°,∠FCE=∠B=50°,∴∠NCF=20°,故选:C.【考点】本题主要考查了图形的折叠的性质、三角形内角和定理、熟练掌握图形的折叠的性质、三角形内角和定理是解题的关键.8、C【解析】【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出,得出,①正确;由平行线的性质得出⑤正确;即可得出结果.【详解】解:,,,故②正确;,,,故①正确;,故⑤正确;而不一定平分,不一定等于,故③,④错误;故选:C.【考点】本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.二、填空题1、76°【解析】【分析】根据平行线的性质和三角形的内角和解答即可.【详解】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【考点】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.2、过直线外一点,有且只有一条直线与已知直线平行【解析】【详解】∵AB∥EF,BC∥EF,∴A、B.C三点在同一条直线上(过直线外一点,有且只有一条直线与已知直线平行).故答案为过直线外一点,有且只有一条直线与已知直线平行.3、或或【解析】【分析】根据,的角平分线交于点,可求得,延长至,根据为的外角的角平分线,可得是的外角的平分线,根据平分,得到,则有,可得,可求得;再根据,分四种情况:①;②;③;④,分别讨论求解即可.【详解】解:外角,的角平分线交于点,∴;如图示,延长至,为的外角的角平分线,是的外角的平分线,,平分,,,,即,又,∴,即;;如果中,存在一个内角等于另一个内角的2倍,那么分四种情况:①,则,;②,则,,;③,则,解得;④,则,解得.综上所述,的度数是或或.【考点】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.4、110°【解析】【详解】试题解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案为点睛:同位角相等,两直线平行.5、59°##59度【解析】【分析】先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.【详解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC两个外角的角平分线相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案为:59°.【考点】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.6、110【解析】【分析】根据CE,AP分别平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根据三角形内角和定理,求出∠ADC即可.【详解】解:∵CE,AP分别平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案为:110.【考点】本题考查了角平分线的性质和三角形内角和定理,熟练掌握了角平分线的性质是解题的关键.7、40【解析】【详解】由折叠可得∠EDC=90°,∠BED=∠FED,由角平分线和三角形内角和得∠DEC=70°,再利用三角形外角的性质可得答案.【解答】解:由折叠可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折叠可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性质可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案为:40.【考点】本题考查图形的折叠,熟知折叠前后图形的形状和大小相等、得到∠BED=∠DEF并利用三角形内角和是解本题的关键,属于常见题型.三、解答题1、(1),理由见解析;(2)【解析】【分析】(1)根据已知条件,先证明FG//BC,继而得∠1=∠3,根据∠1+∠2=180°等量代换得∠3+∠2=180°,从而得证;(2)由(1)的结论,求得∠1,再根据BF⊥AC,求得∠1的余角即可.【详解】解:,理由如下:,
,
,
,
,
;,,
,
,,
,
.【考点】本题考查了平行线的性质与判定,求一个角的余角,熟练平行线的性质与判定是解题的关键.2、(1)见解析(2)【解析】【分析】(1)根据,得出,又因为,等量代换得,最后根据同位角相等,两直线平行即可证明;(2)根据,得出,再根据平分,得出,最后在中利用三角形内角和等于即可求解.(1)解:证明:,,又,,;(2)解:,,平分,,在中,,.答:的度数为.【考点】本题考查了平行线的性质和判定,解题的关键是掌握题中各角之间的位置关系和数量关系.3、(1)见解析(2)35°【解析】【分析】(1)根据,可得BM∥CN,从而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求证;(2)根据对顶角相等可得∠ABD=110°,再由三角形的内角和定理可得∠BAD=35°,然后根据AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考点】本题主要考查了平行线的性质和判定,对顶角的性质,三角形的内角和定理,熟练掌握平行线的性质和判定,对顶角的性质,三角形的内角和定理是解题的关键.4、(1)题设:如果两个角的和等于平角时,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,反例见解析;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【解析】【分析】(1)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平角的定义可得该命题是真命题;(2)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是假命题;利用相交直线被第三条直线所截,内错角不相等可举反例;(3)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是真命题;.【详解】(1)题设:如果两个角的和等于平角,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,如图∠1与∠2是内错角,∠2>∠1;(3)题设:如果两条平行线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石化加油减半活动方案
- 练兵仪式活动方案
- 美容院年终氛围活动方案
- 美容店夏季活动方案
- 石景山支部拓展活动方案
- 电子宠物活动方案
- 端午庆祝活动方案
- 美术集训活动方案
- 美术素描活动方案
- 美容股票活动方案
- GB/T 7123.2-2002胶粘剂贮存期的测定
- GA/T 383-2014法庭科学DNA实验室检验规范
- 学生课程免考(修)申请表(模板)
- 横河DCS-培训讲义课件
- 部编版三年级下册语文全册课件【完整版】
- 初中数学几何1000题专项训练(含详解分析)-最新
- 电子课件-《可编程序控制器及其应用(三菱-第三版)》-A04-1724-课题一-可编程序控制器基础知识
- 实验计划样表
- 三阶魔方入门教程课件
- 计算机组装与维护完整版课件(全)
- 健康疗休养基本服务承诺书
评论
0/150
提交评论