




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)苏教七年级下册期末解答题压轴数学重点初中题目经典套题答案一、解答题1.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由2.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.3.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在中,、分别平分和,请直接写出和的关系;②如图4,.(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.4.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.①若,,则_____;若,则_____;②试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.5.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵,(______)∴,(等式性质)∵,∴,∴.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形中,,,求______;②如图②,在凹四边形中,与的角平分线交于点,,,则______;③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;④如图④,,的角平分线交于点,则,与之间的数量关系是______;⑤如图⑤,,的角平分线交于点,,,求的度数.6.直线与直线垂直相交于点O,点A在直线上运动,点B在直线上运动.(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.(2)如图2,已知不平行分别是和的角平分线,又分别是和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出的度数.(3)如图3,延长至G,已知的角平分线与的角平分线及反向延长线相交于,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)7.如图1,直线m与直线n相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)若∠BAO=50º,∠ABO=40º,求∠ACB的度数;(2)如图2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其度数(用含α的代数式表示);(3)如图3,若直线m与直线n相互垂直,延长AB至E,已知∠ABO、∠OBE的角平分线与∠BOQ的角平分线及延长线分别相交于D、F,在△BDF中,如果有一个角是另一个角的3倍,请直接写出∠BAO的度数.8.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,则∠EAD的度数为;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)9.问题1:现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.(1)探究1:如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.10.(1)思考探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度数.(2)类比探究:如图,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,已知∠P=n°.求∠A的度数(用含n的式子表示).(3)拓展迁移:已知,在四边形ABCD中,四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交于点P,∠P=n°,请画出图形;并探究出∠A+∠D的度数(用含n的式子表示).【参考答案】一、解答题1.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案为:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如图2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.2.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.【详解】(1)由翻折的性质可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故与∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故与∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°则,,由翻折可知:∵,,∴,,当∠FDE=∠DFE时,,解得:;当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.3.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4);.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4);.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1).理由如下:如图1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分别平分和,,.故答案为:.②连结.∵,.故答案为:;(4)由(1)知,,,,,,,,,,,;.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.4.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM+∠FMD=90°-∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.5.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.【详解】(1)∵,(三角形内角和180°)∴,(等式性质)∵,∴,∴.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长交于,由三角形外角性质可知,,,∴.(3)①如图①所示,连接BC,,根据(1)中结论,得,∴,∴;②如图②所示,连接BC,,根据(1)中结论,得,∴,∵与的角平分线交于点,∴,,∴,∵,,∴,∴,∵,∴;③如图③所示,连接BC,,根据(1)中结论,得,∵,,∴,∵与的十等分线交于点,∴,,∴,∴,∵,∴,∴,∴,∴;④如图④所示,设与的交点为点,∵平分,平分,∴,,∵,,∴,∴,∴,即;⑤∵,的角平分线交于点,∴,∴.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.6.(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BA解析:(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BAO和∠ABO的角平分线得出∠BAE=∠OAB,∠ABE=∠ABO,由三角形内角和定理即可得出结论;(2)延长AD、BC交于点F,根据直线MN与直线PQ垂直相交于O可得出∠AOB=90°,进而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分别是∠BAP和∠ABM的角平分线,可知∠BAD=∠BAP,∠ABC=∠ABM,由三角形内角和定理可知∠F=45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠CED=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).∴∠ABO为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.7.(1)135°;(2)不变,;(3)或【分析】(1)由角平分线的性质分别求解∠CAB与∠CBA的大小,再通过三角形内角和定理求值.(2)由三角形的外角定理及角平分线的性质求出∠3+∠4=∠1+解析:(1)135°;(2)不变,;(3)或【分析】(1)由角平分线的性质分别求解∠CAB与∠CBA的大小,再通过三角形内角和定理求值.(2)由三角形的外角定理及角平分线的性质求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通过加减消元求出α与∠D的等量关系.(3)先通过角平分线的性质求出∠FBD为90°,再分类讨论有一个角是另一个角的3倍的情况求解.【详解】解:(1)、分别是和的角平分线,,,.(2)的大小不发生变化,理由如下:如图,平分,平分,平分,,,,是的外角,,即①,是的外角,,即②,由①②得,解得.(3)如图,平分,平分,平分,,,,,是的外角,,.①当时,,,,.②当时,,.,不符合题意.③当时,,解得,,.④当时,,,解得,,,不符合题意.综上所述,或.【点睛】本题考查三角形的内角和定理与外角定理以及角平分线的性质,解题关键是熟练掌握三角形内角和与外角定理,通过分类讨论求解.8.(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为;(4)∠D1F1A﹣∠AF1C的值为.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.解析:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为;(4)∠D1F1A﹣∠AF1C的值为.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形内角和定理构建方程求出x即可解决问题.(3)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再结合三角形内角和定理解决问题即可.(4)设∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再结合三角形内角和定理解决问题即可.【详解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=(180°-n),∵∠AFC=∠FCG-∠FAC=(180°-n)-x=90°-n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-n,∴∠DFE-∠AFC=n-30°.(4)设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°-(180°-n-y)=n+y-90°,∠AF1C=180°-y-n-(180°-n)=135°-y-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-y-n)=n+3y-225°,∵2y+30°+n=180°,∴y=75°-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-x-n)=n+225°-n-225°=n.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,本题有一定的难度.9.(1);(2);(3)见解析;(4)【分析】(1)根据三角形外角性质可得;(2)在四边形中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下解析:(1);(2);(3)见解析;(4)【分析】(1)根据三角形外角性质可得;(2)在四边形中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠,∠2=2∠,从而推导出关系式;(4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△是△EDA折叠得到∴∠A=∠∵∠1是△的外角∴∠1=∠A+∠∴;(2)∵在四边形中,内角和为360°∴∠A++∠∠=360°同理,∠A=∠∴2∠A+∠∠=360°∵∠BDA=∠CEA=180∴∠1+∠∠+∠2=360°∴;(3)数量关系:理由:如下图,连接由(1)可知:∠1=2∠,∠2=2∠∴;(4)由折叠性质知:∠2=180°-2∠AEF,∠1=180°-2∠BFE相加得:.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纺织机械生产线项目技术方案
- 农作物副产品加工项目资金筹措与管理方案
- 2025部队文职考试真题及答案
- 2025博士英语考试真题及答案解析
- 河道水流监测与预警系统设计
- 高层住宅地下室防渗漏施工质量管理探讨
- 2025年小学体育理论试卷及答案
- 2025-2026学年湖南省高一上学期第一次月考数学试卷(原卷及解析)
- 细胞检测考试题目及答案
- 2025年妇产科实训室考试题及答案
- GB/T 17553.1-1998识别卡无触点集成电路卡第1部分:物理特性
- 2023年西藏山南雅砻天然饮品有限公司招聘笔试模拟试题及答案解析
- 海南矿产资源概况
- 幻影桌面云管理平台实践指导手册
- 沪教牛津版英语4A M3U1 In our school:animal school优质课课件
- (通用版)水利安全员考试试题库及答案
- 编版一年级下册 《荷叶圆圆》2022年小学语文作业设计
- 施工现场安全检查记录表(周)以及详细记录
- 汽车配件购销合同集合
- 雨污水管道表格全全套资料
- 数独比赛六宫练习题96道练习
评论
0/150
提交评论