




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》综合测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知,添加以下条件,不能判定的是(
)A. B.C. D.2、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.30° C.35° D.25°3、下列各组中的两个图形属于全等图形的是(
)A. B.C. D.4、已知图中的两个三角形全等,AD与CE是对应边,则A的对应角是()A. B. C. D.5、如图给出了四组三角形,其中全等的三角形有(
)组.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是______.2、如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是______.(只填一个即可)3、如图所示,点在一块直角三角板上(其中),于点,于点,若,则_________度.4、如图,在平面直角坐标系中,将沿轴向右平移后得到,点A的坐标为,点A的对应点在直线上,点在的角平分线上,若四边形的面积为4,则点的坐标为________.5、如图,在四边形中,,,,的延长线与、相邻的两个角的平分线交于点E,若,则的度数为___________.三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰三角形ABC中,∠A=90°,AB=AC=6,D是BC边的中点,点E在线段AB上从B向A运动,同时点F在线段AC上从点A向C运动,速度都是1个单位/秒,时间是t秒(0<t<6),连接DE、DF、EF.(1)请判断△EDF形状,并证明你的结论.(2)以A、E、D、F四点组成的四边形面积是否发生变化?若不变,求出这个值;若变化,用含t的式子表示.2、已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求证:AC=BD;(2)求∠APB的度数.3、已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.4、如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.(1)求证:△ABE≌△DCE;(2)当∠A=80°,∠ABC=140°,时,∠AED=_________度(直接填空).5、如图,在中,,点在的延长线上,于点,若,求证:.-参考答案-一、单选题1、D【解析】【分析】全等三角形的判定有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.【详解】解:在△ABC和△CDA中,,AC=CA;A.添加∠2=∠3,可用ASA判定;B.添加∠B=∠D,可用AAS判定;C.添加BC=DA,可用SAS判定;D.添加AB=DC,是SSA不能判定故选:D【考点】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2、C【解析】【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE-∠DAC代入数据进行计算即可得解.【详解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选C.【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.3、B【解析】【分析】根据全等图形的定义,逐一判断选项,即可.【详解】A.两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.4、A【解析】【分析】观察图形,AD与CE是对应边,根据对应边去找对应角.【详解】观察图形知,AD与CE是对应边∴∠B与∠ACD是对应角又∠D与∠E是对应角∴∠A与∠BCE是对应角.故选:A.【考点】本题考查了全等三角形的性质,正确的识别图形是解题的关键.5、D【解析】【详解】分析:根据全等三角形的判定解答即可.详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等..其中全等的三角形有4组,故选D.点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中.二、填空题1、95°【解析】【分析】根据两个多边形全等,则对应角相等四边形以及内角和即可完成【详解】∵四边形ABCD≌四边形A′B′C′D′∴∠D=∠D′=130゜∵四边形ABCD的内角和为360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案为:95゜【考点】本题考查了多边形全等的性质、多边形的内角和定理,掌握多边形全等的性质是关键.2、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解.【详解】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件.3、15【解析】【分析】根据,,判断OB是的角平分线,即可求解.【详解】解:由题意,,,,即点O到BC、AB的距离相等,∴OB是的角平分线,∵,∴.故答案为:15.【考点】本题考查角平分线的定义及判定,熟练掌握“到一个角的两边距离相等的点在这个角的平分线上”是解题的关键.4、【解析】【分析】先求出点坐标,由此可知平移的距离,根据四边形的面积为4,可求出点坐标和平移的方向、距离,则可求B′点坐标.【详解】解:∵沿轴向右平移后得到,∴点与点是纵坐标相同,是4,把代入中,得到,∴点坐标为(4,4),∴点是沿轴向右平移4个单位,过点作,,∵点在的角平分线上,且,四边形的面积为4,∴∴∴∴点坐标为(1,3),根据平移的性质可知点B也是向右平移4个单位得到.∵点(1,3),∴B′(5,3).故答案为:(5,3).【考点】本题主要考查了一次函数图象上点的坐标特征、平移性质,通过求平移后的坐标得到平移的距离是解决本题的的关键.5、【解析】【分析】先证明Rt△CDA≌Rt△CBA得到,再由角平分线的定义求出∠EDC=45°,最后根据三角形内角和定理求解即可.【详解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分与∠ADC相邻的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案为:15°.【考点】本题主要考查了全等三角形的性质与判定,三角形内角和定理,角平分线的定义,熟知全等三角形的性质与判定条件是解题的关键.三、解答题1、(1)△EDF为等腰直角三角形,证明见解析;(2)四边形AEDF面积不变,9.【解析】【分析】(1)连接AD,利用等腰直角三角形的性质根据SAS证明△BDE≌△ADF,即可得到结论;(2)根据(1)得到S△BDE=S△ADF,推出S四边形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,根据公式计算即可得到答案.【详解】解:(1)△EDF为等腰直角三角形,理由如下:连接AD,∵AB=AC,∠BAC=90°,点D是BC中点,∴AD=BD=CD=BC,AD平分∠BAC,∴∠B=∠C=∠BAD=∠CAD=45°,∵点E、F速度都是1个单位秒,时间是t秒,∴BE=AF,又∵∠B=∠DAF=45°,AD=BD,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF.∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△EDF为等腰直角三角形;(2)四边形AEDF面积不变,理由:∵由(1)可知,△BDE≌△ADF,∴S△BDE=S△ADF,∴S四边形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,∴S四边形AEDF=××AC×AB=9.【考点】此题考查等腰直角三角形的性质,等腰三角形三线合一的性质,全等三角形的判定及性质.2、(1)见解析;(2)【解析】【分析】(1)通过证明,即可求证;(2)利用三角形外角的性质可得,由(1)可得,从而得到,利用三角形内角和的性质即可求解.(1)证明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性质可得∴,∴,【考点】此题考查了全等三角形的判定与性质,三角形内角的性质以及三角形外角的性质,解题的关键是熟练掌握相关基本性质.3、(1)见解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根据全等三角形的判定得出△CAE≌△ABD,进而利用全等三角形的性质得出AE=BD即可;(2)根据全等三角形的判定得出△AEH≌△BDH,进而利用全等三角形的性质解答即可;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,根据全等三角形判定和性质解答即可.【详解】证明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE与△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)连接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH与△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,交HR的延长线于点T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG与△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT与△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考点】本题考查全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用数形结合的思想思考问题,属于压轴题.4、(1)见解析;(2)100【解析】【分析】(1)根据∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS证明△ABE≌△DCE;(2)根据三角形全等的性质求出∠D的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BCE,∴BE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版一年级道德与法治下册课堂活动计划
- 会议记录与决策跟踪工具表确保会议效果与执行
- 业务流程优化决策树分析模板
- 学校让假签三方协议合同
- 建筑工程监理合作协议书
- 大理民宿转让合同协议书
- 宝安区推广变压器协议书
- 子女继承房产补偿协议书
- 员工与顾客交易合同范本
- 幼儿园安全协议合同范本
- 2025-2026学年统编版小学语文四年级上册教学计划及进度表
- 2025年湖北省武汉市中考语文真题(含答案)
- 中国心房颤动管理指南2025解读
- Unit1Weletotheunit课件译林版八年级英语上册
- 离职交接事项协议书范本
- 【高考真题】海南省2025年高考真题物理(含答案)
- 体育教师自我介绍课件
- 银行员工职业操守课件
- 初中开学第一课心理健康课
- 艺康servsafe培训课件
- TDT1067-2021不动产登记数据整合建库技术规范
评论
0/150
提交评论