




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期中试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CEAB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.242、已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()A.﹣7 B.7 C.2 D.﹣23、已知△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或164、如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形(相邻纸片之间不重叠,无缝隙).若四边形的面积为13,中间空白处的四边形的面积为1,直角三角形的两条直角边分别为和,则(
)A.12 B.13 C.24 D.255、如图,四边形ABCD是平行四边形,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连接CE,当EA=EC,且点M为BC的中点时,AB:AE的值为(
)A.2 B. C. D.6、如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A. B.1 C.2 D.7、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.二、多选题(3小题,每小题2分,共计6分)1、若是方程的一个根,则的值是(
)A.1 B. C.3 D.2、在下列选项中,是方程的根的是(
)A.6 B. C.2 D.3、用公式解方程正确的是(
)A. B. C. D.第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_____.2、如果关于的一元二次方程的一个解是,那么代数式的值是___________.3、对一批口罩进行抽检,统计合格口罩的只数,得到合格口罩的频率如下:抽取只数(只)50100150500100020001000050000合格频率0.820.830.820.830.840.840.840.84估计从该批次口罩中任抽一只口罩是合格品的概率为_____.4、已知关于的方程的一个根是1,则______.5、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是__________.6、已知方程的一根为,则方程的另一根为_______.7、如图,四边形、是正方形,点、分别在、上,连接,过点作,交于点,若,,则________.8、有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.9、如图,在矩形中,AD=6,将矩形折叠,使点B与点D重合,落在处,若,则折痕的长为__________.10、如图,在矩形中,点分别在上,.只需添加一个条件即可证明四边形是菱形,这个条件可以是______________(写出一个即可).四、解答题(6小题,每小题10分,共计60分)1、如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF,求证:∠BAE=∠DAF.2、如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.3、如图,在四边形中,AB//DC,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.4、如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至点G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.5、已知方程的一个根比另一个根小4,求这两个根和的值.6、解方程:(1);
(2).
(3).-参考答案-一、单选题1、A【解析】【分析】根据题意得:MN是AC的垂直平分线,即可得AD=CD,AE=CE,然后由CEAB,可证得CD∥AE,继而证得四边形ADCE是菱形,再根据勾股定理求出AD,进而求出菱形ADCE的周长.【详解】:∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N,∴MN是AC的垂直平分线,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CEAB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CDAE,∴四边形ADCE是平行四边形,∴四边形ADCE是菱形;∴OA=OC=AC=2,OD=OE,AC⊥DE,∵∠ACB=90°,∴DEBC,∴OD是△ABC的中位线,∴OD=BC=×3=1.5,∴AD==2.5,∴菱形ADCE的周长=4AD=10.故选A.【考点】本题考查了作图-复杂作图,线段垂直平分线的性质,菱形的判定与性质,三角形中位线的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.2、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x2=3,x1x2=1,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故选:B.【考点】本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数的关系求解代数式的值是解本题的关键.3、D【解析】【分析】由△ABC为等腰三角形,BC=6,且AB,AC为方程x2﹣8x+m=0两根,可得两种情况:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此时方程的判别式为0,分别求解即可.【详解】解:∵△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此时方程的判别式为0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故选:D.【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键.4、D【解析】【分析】根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得,进而根据面积差以及三角形面积公式求得,最后根据完全平方公式即可求得.【详解】菱形的对角线互相垂直平分,个直角三角形全等;,,,四边形是正方形,又正方形的面积为13,正方形的边长为,根据勾股定理,则,中间空白处的四边形的面积为1,个直角三角形的面积为,,,,.故选D.【考点】本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得是解题的关键.5、B【解析】【分析】根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,所以对边平行且相等的四边形是平行四边形;连接AC交BF于点O,根据EA=EC推知▱ABCD是菱形,根据菱形的邻边相等知AB=BC;然后结合已知条件“M是BC的中点,AM⊥BC”证得△ADE≌△CBF(ASA),所以AE=CF,从而证得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代换知(AE=CF,AB=BC)AB:AE=.【详解】解:连接AC,∵四边形ABCD是平行四边形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四边形AECF为平行四边形,∵EA=EC,∴▱AECF是菱形,∴AC⊥BD,∴平行四边形ABCD是菱形,∴AB=BC,∵M是BC的中点,AM⊥BC,∴AB=AC,∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故选:B.【考点】本题综合考查了全等三角形的判定与性质、菱形的判定与性质以及等边三角形的判定与性质等知识点,证得▱ABCD是菱形是解题的难点.6、B【解析】【分析】由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【详解】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,设CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故选:B.【考点】本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解题的关键.7、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.二、多选题1、AD【解析】【分析】把代入方程中,得到关于的一元二次方程,然后解方程即可.【详解】解:把代入方程中,得:,解得:,,所以的值为1或,故选AD.【考点】本题考查了一元二次方程的解,解题的关键是能得出关于的一元二次方程.2、AD【解析】【分析】分别将选项带入方程计算即可.【详解】解:当时,,成立,6是方程的根;当时,,不是方程的根;当时,,2不是方程的根;当时,,成立,是方程的根;故选:AD.【考点】本题考查了一元二次方程方程的根,使方程成立的未知数的取值是方程的根.3、AC【解析】【分析】求出的值,再代入公式求出即可.【详解】∴方程有两个不相等的实数根∴,∴,故选AC.【考点】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.三、填空题1、2a2【解析】【分析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积﹣直角三角形的面积.【详解】解:阴影部分的面积=大正方形的面积+小正方形的面积﹣直角三角形的面积=(2a)2+a2﹣•2a•3a=4a2+a2﹣3a2=2a2.故答案为:2a2.【考点】本题考查正方形中不规则图形面积的求法,解题的关键是利用正方形的性质,通过规则图形进行求解.2、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题.【详解】解:关于的一元二次方程的一个解是,,,.故答案为:2020.【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.3、0.84【解析】【分析】观察表格合格的频率趋近于0.84,从而由此得到口罩合格的概率即可.【详解】解:∵随着抽样的增大,合格的频率趋近于0.84,∴估计从该批次口罩中任抽一只口罩是合格品的概率为0.84.故答案为:0.84.【考点】本题考查了用频率估计概率,解题关键是熟练运用频率估计概率解决问题.4、【解析】【分析】根据题意可得出1+6+m2-2m+5=0,然后解出该方程的解即可.【详解】解:∵方程的一个根是1,∴1+6+m2-2m+5=0,∴m2-2m=-12,∴2(m2-2m)=-24.∴故答案为:-24【考点】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.5、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可.【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为.故答案为:.【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.6、【解析】【分析】设方程的另一个根为c,再根据根与系数的关系即可得出结论.【详解】解:设方程的另一个根为c,∵,∴.故答案为.【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键.7、【解析】【分析】求出BE的长,再根据两组对边分别平行的四边形是平行四边形求出四边形EFCH是平行四边形,根据平行四边形的对边相等可得EF=CH,再根据正方形的性质可得AB=BC,AE=EF,然后求出BH=BE即可得解.【详解】∵AB=4,AE=1,∴BE=AB−AE=4−1=3,∵四边形ABCD,AEFG都是正方形,∴AD∥EF∥BC,又∵EH∥FC,∴四边形EFCH平行四边形,∴EF=CH,∵四边形ABCD,AEFG都是正方形,∴AB=BC,AE=EF,∴AB−AE=BC−CH,∴BE=BH=3.故答案为3.【考点】本题主要考查正方形和平行四边形,掌握正方形与平行四边形的判定与性质是解题的关键.8、【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【考点】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.9、4【解析】【分析】由,,可求,,由折叠可知,得出,为的直角三角形;由可知,,,由折叠的性质得,等量代换后判断为等边三角形,即可得出答案.【详解】解:在中,∵∴,,∵,∴,由折叠的性质得,∴,∴为等边三角形,由折叠可知:BE=DE,∵,∴,∵AD=6,∴DE=BE=4,故.故答案为:4.【考点】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.10、(答案不唯一)【解析】【分析】由题意易得四边形是平行四边形,然后根据菱形的判定定理可进行求解.【详解】解:∵四边形是矩形,∴,∵,∴四边形是平行四边形,若要添加一个条件使其为菱形,则可添加或AE=CE或CE=CF或AF=CF,理由:一组邻边相等的平行四边形是菱形;故答案为(答案不唯一).【考点】本题主要考查菱形的判定定理、矩形的性质及平行四边形的判定,熟练掌握菱形的判定定理、矩形的性质及平行四边形的判定是解题的关键.四、解答题1、见解析【解析】【分析】根据已知条件,直接证明△ABE≌△ADF,即可证明∠BAE=∠DAF.【详解】∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,在△ABE和△ADF中∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.【考点】本题考查了菱形的性质,三角形全等的性质与判定,理解菱形的性质是解题的关键.2、【解析】【分析】根据题意画出树状图,共有8种等可能的路径,其中落入③号槽内的有3种路径,再由概率公式求解即可.【详解】画树状图得:所以圆球下落过程中共有8种路径,其中落入③号槽内的有3种,所以圆球落入③号槽内的概率为.【考点】树状图法求概率的关键在于列举出所有可能的结果,当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法.3、(1)证明见解析;(2)OE=2.【解析】【分析】(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出,根据直角三角形斜边的中线等于斜边的一半即可求解.【详解】(1)证明:∵AB//CD,∴,∵平分,∴,∴,∴,又∵,∴,又∵∥,∴四边形是平行四边形,又∵,∴是菱形.(2)解:∵四边形是菱形,对角线、交于点,∴,,,∴,在Rt△AOB中,,∴,∵,∴,在Rt△AEC中,,为中点,∴.【考点】本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.4、(1)见解析(2)当AC=2AB时,四边形EGCF是矩形.理由见解析【解析】【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,中点证出BE=DF,证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由全等可以推出EG=CF,又因为∠OEG=90°,得出四边形EGCF是矩形,即可得出结论.(1)证明:∵四边形AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林防灭火知识培训课件
- 森林防火培训知识课件
- 病毒性肝炎试题附答案
- 2025年市场营销专业求职面试指南及模拟题解答手册
- 2025年云计算行业招聘面试常见问题集
- 2025年标准部招聘面试模拟题解析
- 2025年中级医学影像专业考试试题解析及答题技巧
- 云南省剑川县第一中学2026届化学高三上期中经典试题含解析
- 2026届山东省泰安第十九中学化学高一第一学期期中学业质量监测试题含解析
- 桥式起重机知识培训课件
- GB/T 19851.12-2025中小学体育器材和场地第12部分:学生体质健康测试器材
- 公安科技信息化课件
- 桥梁工程支架浇筑连续箱梁的施工监理实施细则
- 2025年国家药品监督管理局直属单位招聘126人笔试模拟试题及参考答案详解
- 2025年医疗器械经营企业法律法规培训考试(含答案)
- 2025年部编版新教材语文九年级上册教学计划(含进度表)
- 2025年云南省中考数学真题含答案
- 留疆战士考试题库及答案
- 中小学老师管理办法
- 绍兴市上虞区东关片区涝区治理-五甲渡闸站建设工程报告书
- 电气车间送电试车方案
评论
0/150
提交评论