




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省霍州市中考数学真题分类(勾股定理)汇编单元测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.32、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.3、《九章算术》是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)24、如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=6,BF=4,△ADG的面积为8,则点F到BC的距离为()A. B. C. D.5、如图,在中,,,,为边上一动点,于,于,为中点,则的最小值为(
).A. B. C. D.6、以下列各组数的长为边作三角形,不能构成直角三角形的是(
)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,157、在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设步为米),却踩伤了花草.2、如图,在四边形中,,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.3、勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为______km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为______km.4、《九章算术》是我国古代数学名著,书中有下列问题:“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地,问木长几何?”其意思为:今有墙高1丈,倚木杆于墙,使木之上端与墙平齐,牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.问木杆是多长?(1丈=10尺)设木杆长为x尺根据题意,可列方程为______.5、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,则AC=_________米.6、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于_________cm2.7、如图,Rt△ABC的两条直角边,.分别以Rt△ABC的三边为边作三个正方形.若四个阴影部分面积分别为,,,,则的值为______,的值为______.8、如图,在的网格中每个小正方形的边长都为1,的顶点、、都在格点上,点为边的中点,则线段的长为________.三、解答题(7小题,每小题10分,共计70分)1、如图是一个长方形的大门,小强拿着一根竹竿要通过大门.他把竹竿竖放,发现竹竿比大门高1尺;然后他把竹竿斜放,竹竿恰好等于大门的对角线的长.已知大门宽4尺,请求出竹竿的长.2、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”(注:1步=5尺)译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长.”3、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积.4、小明爸爸给小明出了一道题:如图,修公路遇到一座山,于是要修一条隧道.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工,过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量,,米,米.若施工队每天挖100米,求施工队几天能挖完?5、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.(1)求的度数;(2)海港受台风影响吗?为什么?6、(1)图1是由有20个边长为1的正方形组成的,把它按图1的分割方法分割成5部分后可拼接成一个大正方形(内部的粗实线表示分割线),请你在图2的网格中画出拼接成的大正方形.(2)如果(1)中分割成的直角三角形两直角边分别为a,b斜边为c.请你利用图2中拼成的大正方形证明勾股定理.(3)应用:测量旗杆的高度:校园内有一旗杆,小希想知道旗杆的高度,经观察发现从顶端垂下一根拉绳,于是他测出了下列数据:①测得拉绳垂到地面后,多出的长度为0.5米;②他在距离旗杆4米的地方拉直绳子,拉绳的下端恰好距离地面0.5米.请你根据所测得的数据设计可行性方案,解决这一问题.(画出示意图并计算出这根旗杆的高度).7、如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.(1)求小明家离小红家的距离;(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.-参考答案-一、单选题1、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,,,或(舍去),故选:D.【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.2、A【解析】【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【考点】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.3、C【解析】【分析】首先设芦苇长x尺,则水深为(x−1)尺,根据勾股定理可得方程(x−1)2+52=x2.【详解】解:设芦苇长x尺,由题意得:(x−1)2+52=x2,即x2﹣52=(x﹣1)2故选:C.【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽象出勾股定理这一数学模型.4、C【解析】【分析】先求出△ABD的面积,根据三角形的面积公式求出DF,设点F到BD的距离为h,根据•BD•h=•BF•DF,求出BD即可解决问题.【详解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴•(AF+DF)•BF=16,∴•(6+DF)×4=16,∴DF=2,∴DB=,设点F到BD的距离为h,则有•BD•h=•BF•DF,∴h=4×2,∴h=,∴点F到BC的距离为.故选:C【考点】此题考查了翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.5、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其解即可.【详解】解:如图,连接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故选:D.【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值.6、B【解析】【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、32+42=52,故是直角三角形,不符合题意;B、42+52≠62,故不是直角三角形,符合题意;C、62+82=102,故是直角三角形,不符合题意;D、92+122=152,故是直角三角形,不符合题意;故选:B.【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7、A【解析】【分析】直接根据勾股定理求解即可.【详解】解:∵在直角三角形中,勾为3,股为4,∴弦为,故选A.【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.二、填空题1、【解析】【分析】少走的距离是AC+BC-AB,在直角△ABC中根据勾股定理求得AB的长即可.【详解】解:如图,∵在中,,∴米,则少走的距离为:米,∵步为米,∴少走了步.故答案为:.【考点】本题考查正确运用勾股定理.善于观察题目的信息,掌握勾股定理是解题的关键.2、29【解析】【分析】如图(见解析),先根据正方形的面积公式可得,再利用勾股定理可得的值,由此即可得出答案.【详解】如图,连接AC,由题意得:,在中,,,在中,,,则正方形丁的面积为,故答案为:29.【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.3、
20
13【解析】【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【详解】(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案为(1)20;(2)13.【考点】本题考查了勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.4、102+(x-1)2=x2【解析】【分析】当木杆的上端与墙头平齐时,木杆与墙、地面构成直角三角形,设木杆长为x尺,则木杆底端离墙有(x-1)尺,根据勾股定理可列出方程.【详解】解:如图,设木杆AB长为x尺,则木杆底端B离墙的距离即BC的长有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案为:102+(x-1)2=x2.【考点】此题考查了勾股定理的应用,解题的关键是由实际问题抽象出直角三角形,从而运用勾股定理解题.5、【解析】【分析】首先根据BC,AC的比设出BC,AC,然后利用勾股定理列式计算求得a,即可求解.【详解】解:∵AC∶BC=1∶7,∴设AC=a,则BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案为:10.【考点】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.6、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面积.【详解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案为:24.【考点】本题考查勾股定理、完全平方公式的变形求值、三角形面积计算的运用,熟知勾股定理是解题的关键.7、
24
0【解析】【分析】先证明从而可得再利用图形的面积关系可得:两式相减可得:而证明从而可得第二空的答案.【详解】解:如图,以Rt△ABC的三边为边作三个正方形,两式相减可得:而故答案为:24,0【考点】本题考查的是正方形的性质,全等三角形的判定与性质,图形面积之间的关系,证明是解本题的关键.8、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,则AC2+BC2=AB2,再由勾股定理的逆定理证明△ABC是直角三角形,然后由直角三角形斜边上的中线性质即可得出答案.【详解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵点O为AB边的中点,∴CO=AB=2.5,故答案为:2.5.【考点】本题考查了勾股定理、勾股定理的逆定理以及直角三角形斜边上的中线性质等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.三、解答题1、尺【解析】【分析】根据题中所给的条件可知,竹竿斜放恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高,进而解答即可.【详解】解:设门高为x尺,则竹竿长为(x+1)尺,根据勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴门高7.5尺,竹竿高=7.5+1=8.5(尺).故答案为尺.【考点】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解题关键.2、尺【解析】【分析】设秋千的绳索长为x尺,根据题意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【详解】解:设秋千的绳索长为x尺,根据题意可列方程为:x2=102+(x-4)2,解得:x=,∴秋千的绳索长为尺.【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AB、AC的长,掌握直角三角形中两直角边的平方和等于斜边的平方.3、【解析】【分析】先由折叠可知EC=BC=2,进而可知AD=CE,通过全等三角形的角角边判定定理可证明△ADF≌△CEF,由全等可知FE=DF,设FC为x,则FE=DF=4-x,根据直角三角形的勾股定理可列方程,从而计算出CF的长度,通过CF与AD的长度可计算出重合部分面积.【详解】解:∵△AEC是由△ABC沿AC折叠后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF与△CEF中,,∴△ADF≌△CEF(AAS),设FC=x,则FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折叠后重合部分的面积为.【考点】本题考查图形折叠的相关性质,以及直角三角形的勾股定理的应用,以及全等三角形的判定,找到合适的条件,选择适合的判定方法去证明全等三角形,利用勾股定理和方程思想列方程是解决本题的关键.4、施工队6天能挖完.【解析】【分析】根据题意可得∠BCD=90°,再利用勾股定理得出BC,继而即可求解.【详解】解:∵,∴,∵米,米,∴(米)故(天)答:施工队6天能挖完.【考点】本题考查外角的性质,勾股定理的应用,解题的关键是利用勾股定理求得∠BCD=90°.5、(1)90°;(2)受台风影响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响.【详解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响.【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.6、(1)见解析;(2)见解析;(3)在四边形ABCD中,AB⊥BC,DC⊥BC,AD比AB长0.5米,BC=4米,CD=0.5米,求AB的长;8米【解析】【分析】(1)将图1分割成五块:四个直角边分别为1、2的直角三角形,一个边长为2的正方形,再在图2中,拼成边长为的正方形即可.(2)根据20个小正方形的面积的和等于拼成的正方形的面积,根据勾股定理确定截线的长度即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电厂防雨棚改造施工方案
- 2025年汽车清洁剂项目申请报告模范
- 护具营销方案
- 房地产上市活动方案策划
- 简单旧楼顶防水施工方案
- 中性粒细胞功能调控的精准医疗应用-洞察及研究
- 天津企业咨询培训调研方案
- 2025年光伏组件生产设备智能化改造与能源互联网融合报告
- 2025年光伏组件效率提升技术市场潜力与竞争格局报告
- 无障碍旅游服务发展-洞察及研究
- 2025至2030年中国柔性电路板行业市场深度评估及投资战略规划报告
- 2025秋人教版(2024)二年级上册数学教学计划
- 桥梁河床断面测量课件
- 中药质量检测技术
- 普外科肛肠科科室介绍
- 事业单位工勤人员技师考试职业道德复习试题及答案
- 2025年三级安全教育试题及答案
- 危化品经营许可证管理办法
- 2024和2025年中职高考对口升学(理论考试)真题卷【财经商贸大类】
- 苏教版一年级科学上册教学资源计划
- 矿山爆破施工管理制度
评论
0/150
提交评论