难点解析甘肃省敦煌市中考数学真题分类(一元一次方程)汇编章节测评试卷_第1页
难点解析甘肃省敦煌市中考数学真题分类(一元一次方程)汇编章节测评试卷_第2页
难点解析甘肃省敦煌市中考数学真题分类(一元一次方程)汇编章节测评试卷_第3页
难点解析甘肃省敦煌市中考数学真题分类(一元一次方程)汇编章节测评试卷_第4页
难点解析甘肃省敦煌市中考数学真题分类(一元一次方程)汇编章节测评试卷_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省敦煌市中考数学真题分类(一元一次方程)汇编章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下面是一个被墨水污染过的方程:2x-=x-,答案显示此方程的解是x=,被墨水遮住的是一个常数,则这个常数是()A.2 B.-2C.- D.2、我国古代数学著作《增删算法统宗》记载“绳索量牵”问题;“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托.设绳索长x托,则符合题意的方程是()A.2x=(x-1)-1 B.2x=(x+1)+1C.x=(x+1)+1 D.x=(x-1)-13、已知x=y,则下列等式不一定成立的是()A.x﹣k=y﹣k B.x+2k=y+2k C. D.kx=ky4、下列变形正确的是(

)A.由5x=2,得 B.由5-(x+1)=0,得5-x=-1C.由3x=7x,得3=7 D.由,得5、小明每天早晨在8时前赶到离家的学校上学.一天,小明以的速度从家出发去学校,后,小明爸爸发现小明的语文书落在家里,于是,立即以的速度去追赶.则小明爸爸追上小明所用的时间为(

)A. B. C. D.6、解方程,以下去括号正确的是()A. B. C. D.7、如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2019次相遇在哪条边上?(

)A.AD B.DC C.BC D.AB8、下列说法中,正确的个数有(

)①若mx=my,则mx-my=0

②若mx=my,则x=y③若mx=my,则mx+my=2my

④若x=y,则mx=myA.2个 B.3个 C.4个 D.1个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、若方程和方程的解相同,则_________.2、已知关于x的方程2x+a+5=0的解是x=1,则a的值为_____.3、如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)4、为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是________.5、已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过_____秒两人相距100米.6、如图,点A在数轴上表示的数是-8,点B在数轴上表示的数是16;线段的中点表示的数是__________,若点是数轴上的一个动点,当时,点表示的数是__________.7、已知,利用等式的基本性质,的值为___________.三、解答题(7小题,每小题10分,共计70分)1、小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?2、为积极响应“创建文明城”的号召,某校七年级学生组建了一支“创建文明城”志愿者服务队.其中30%的同学去做“文明劝导、礼让他人”的志愿服务,40%的同学去做“清洁庭院、美化家园”的志愿服务,剩下的150名同学去做“传播文明、奉献爱心”的志愿服务.该校七年级共有多少名同学参加了这次活动?3、为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?4、已知数轴上两点A,B对应的数分别是,4,P、M、N为数轴上的三个动点,点M从B点出发速度为每秒2个单位,点N从A点出发速度为M点的2倍,点P从原点出发速度为每秒1个单位.(1)线段之间的距离为________个单位长度.(2)若点M向左运动,同时点N向右运动,求多长时间点M与点N相遇?(3)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?5、对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n秒,得到点,称这样的操作为点的“m速移”点称为点的“m速移”点.(1)点A、B在数轴上对应的数分别是a、b,且.①若点A向右平移n秒的“5速移”点与点B重合,求n;②若点A向右平移n秒的“2速移”点与点B向右平移n秒的“1速移”点重合,求n;(2)数轴上点M表示的数为1,点C向右平移3秒的“2速移”点为点,如果C、M、三点中有一点是另外两点连线的中点,求点C表示的数;(3)数轴上E,F两点间的距高为3,且点E在点F的左侧,点E向右平移2秒的“x速移”点为点,点F向右平移2秒的“y速移”点为点,如果,请直接用等式表示x,y的数量关系.6、阅读理解题:无限循环小数与分数如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定的顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数。例如,0.666…的循环节是“6”,它可以写作0.,像这样的循环小数称为纯循环小数,又如,0.1333…、0.03456456456…的循环节分别是“3”,“456”,它们可分别写作0.1、0.5,像这样的循环小数称为混循环小数.(1)任何一个分数都可以化成有限小数或无限循环小数.请将下列分数化成小数:=______;=_______.(2)无限小数化成分数,可有两种方法:方法一:如果小数是纯循环小数,化为分数时,分数的分子是它的一个循环节的数字所组成的数,分母则由若干个9组成,9的个数为一个循环节的数字的个数.例如:0.==;0.1==.请将纯循环小数化为分数:0.=_______.如果小数是混循环小数,可以先化为纯循环小数然后再化为分数.请将混循环小数化为分数:0.1=_______.方法二:应用一元一次方程来解:例如:将循环小数0.化成分数设x=0.,则100x=23+0.100x=23+x,99x=23x=所以0.试一试,请你用一元一次方程仿照上述方法将0.1化成分数.7、已知数轴上两点A,B(点B在点A的右侧),若数轴上存在一点C,使得AC=2BC,则称点C为点A,B的“2倍分点”,若使得AC=3BC,则称点C为点A,B的“3倍分点”,…,若使得AC=kBC,则称点C为点A,B的“k倍分点(k为正整数)”.请根据上述规定回答下列问题:(1)如图,若点A表示数﹣1,点B表示数2.①当点C表示数1时,则k=;②当点C为点A,B的“5倍分点”时,求点C表示的数;(2)若点A表示数a,AB=6,当点C为AB的“3倍分点”时,请求点C表示的数.(用含a的代数式表示)-参考答案-一、单选题1、B【解析】【分析】设被墨水遮盖的常数是a,则把x=代入方程得到一个关于a的方程,即可求解.【详解】解:设被墨水遮盖的常数是a,根据题意得:-=-a,解得:a=-2.故选B.【考点】本题考查了方程的解的定义,理解定义是关键.2、D【解析】【分析】设绳索长x托,则竿长(x−1)托,根据“用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托”,即可得出关于x的一元一次方程,此题得解.【详解】解:设绳索长x托,则竿长(x-1)托,依题意,得:.故选:D.【考点】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.3、C【解析】【分析】根据等式的基本性质1是等式两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式两边都乘以(或除以)同一个数(除数不为0),所得的结果仍是等式可以得出答案.【详解】解:A、因为x=y,根据等式性质1,等式两边都减去k,等式仍然成立,所以A正确;B、因为x=y,根据等式性质1,等式两边都加上2k,等式仍然成立,所以B正确;C、因为x=y,根据等式性质2,等式两边都同时除以一个不为0的数,等式才成立,由于此选项没强调k≠0,所以C不一定成立;D、因为x=y,根据等式的基本性质2,等式两边都乘以k,等式仍然成立,所以D正确.故选C.【考点】本题主要考查了等式的基本性质,熟练掌握等式的基本性质以及理解到位除数不能为0是解决本题的关键.4、D【解析】【分析】根据等式的基本性质,逐项判断即可.【详解】解:∵5x=2,∴,∴选项A不符合题意;∵5﹣(x+1)=0,∴5﹣x﹣1=0,∴5﹣x=1,∴选项B不符合题意;∵在等式的左右两边要同时除以一个不为零的数,所得等式仍然成立,而3x=7x中的x是否为零不能确定,∴3=7不成立,∴选项C不符合题意;∵,∴,∴,∴选项D符合题意.故选:D.【考点】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5、C【解析】【分析】小明走的总路程与爸爸走的路程相同,根据题意列出方程即可.【详解】解:设小明爸爸追上小明所用的时间为,则小明走的路程为,小明的爸爸走的路程为,由题意列式得:,解得:.即小明爸爸追上小明所用的时间为4分钟.故选:C【考点】本题考查一元一次方程的应用,根据题意列出方程是解题关键.6、D【解析】【分析】去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.【详解】解:,故选:D.【考点】此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.7、C【解析】【分析】设出正方形的边长,甲的速度是乙的速度的3倍,求得每一次相遇的地点,第二次相遇地点,第三次相遇地点,第四册相遇地点,找出规律,发现四次一循环即可解答.【详解】解:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,乙行的路程为,甲行的路程为,在AD边的中点相遇;②第二次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在CD边的中点相遇;③第三次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在BC边的中点相遇;④第四次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在AB边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,乙行的路程为,甲行的路程为,在AD边的中点相遇;……四次一个循环,因为,所以它们第2019次相遇在边BC中点上.故选择C.【考点】本题主要考查图形行程中的相遇问题应用题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.8、B【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:①根据等式性质1,mx=my两边都减my,即可得到mx-my=0;②根据等式性质2,需加条件m≠0;③根据等式性质1,mx=my两边都加my,即可得到mx+my=2my;④根据等式性质2,x=y两边都乘以m,即可得到mx=my;综上所述,①③④正确;故选B.【考点】主要考查了等式的基本性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.二、填空题1、6【解析】【分析】本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【详解】解方程2x−1=3,得:x=2,把x=2代入4x−a=2,得:4×2−a=2,解得:a=6.故答案为:6.【考点】本题考查同解方程的知识,比较简单,解决本题的关键是理解方程解的定义,注意细心运算.2、-7【解析】【详解】解:把x=1代入2x+a+5=0,有2+a+5=0,解得a=-7,故答案为:7.3、25【解析】【分析】设瓶子的底面积为xcm2,根据瓶子中的液体体积相同列出方程,求出方程的解即可.【详解】设瓶子底面积为xcm2,根据题意得:12x=500-8x,解得:x=25故答案为:25【考点】此题考查了一元一次方程的应用,弄清题意,找到等量关系是解答本题的关键.4、1710【解析】【分析】设该照相机的原售价是x元,根据售价-进价=利润,列出一元一次方程,即可求解.【详解】设该照相机的原售价是x元,根据题意得:,解得:x=1710,答:该照相机的原售价是1710元.【考点】本题主要考查一元一次方程的实际应用,找出等量关系,列出方程,是解题的关键.5、90或110【解析】【分析】先设时间为x,利用:速度×时间=路程,列出方程,解出即可.【详解】解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.【考点】本题考查一元一次方程的应用,关键在于对方程的熟悉,注意分类讨论.6、

4

-42或【解析】【分析】根据线段中点的性质可求得线段的中点表示的数;分点C在点A左边、在线段AB上以及在点B右边三种情况讨论,列方程求解即可.【详解】解:∵点A在数轴上表示的数是-8,点B在数轴上表示的数是16,∴线段的中点表示的数为4;设点C表示的数为x,当点C在点A左边,即x<-8时,依题意得:2(-8-x)-(16-x)=10,解得:x=-42;当点C在线段AB上,即-816时,依题意得:2(x+8)-(16-x)=10,解得:x=;当点C在点A右边,即x>16时,依题意得:2(x+8)-(x-16)=10,解得:x=-22(舍去);综上,点C表示的数是-42或;故答案为:4;-42或.【考点】本题考查两点间的距离,并综合了数轴、一元一次方程,注意进行分情况讨论,不要漏解.7、2【解析】【分析】首先根据等式的性质1,两边同时+3得,再根据等式的性质2,两边同时除以5即可得到答案.【详解】解:,根据等式的性质1,两边同时+3得:,即:,根据等式的性质2,两边同时除以5得:,∴,故填:2.【考点】此题主要考查了等式的性质,关键是掌握等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.三、解答题1、240千米【解析】【分析】平常速度行驶了的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是千米,则平时每小时行驶千米,减速后每小时行驶千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时,则可得:,解得:,答:小强家到他奶奶家的距离是240千米.【考点】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.2、该校七年级共有500名同学参加了这次活动【解析】【分析】根据题意可求出去做“传播文明、奉献爱心”的志愿服务学生占比,设参加活动的总人数为,列方程,计算求解即可.【详解】解:由题意知,去做“传播文明、奉献爱心”的志愿服务学生占比为设参加活动的总人数为,则,解得∴该校七年级共有500名同学参加了这次活动.【考点】本题考查了一元一次方程的应用.解题的关键在于根据题意列方程.3、(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【解析】【分析】(1)设乙工程队每天能完成绿化的面积是x平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=(元);选择方案②乙队单独完成所需费用=(元);选择方案③甲、乙两队全程合作完成所需费用=(元);∴选择方案①完成施工费用最少.【考点】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.4、(1)14(2)秒(3)7秒或1.5秒【解析】【分析】(1)根据数轴上两点之间的距离公式求出答案;(2)设运动时间为t秒时,点M与点N相遇,列方程解答;(3)点M、N、P运动的时间为y秒时,根据点P到点M、N的距离相等,分两种情况列方程求解.(1)解:AB=4-(-10)=14,故答案为:14;(2)解:设运动时间为t秒时,点M与点N相遇.2t+22t=146t=14t=;当运动时间为秒时,点M与点N相遇.(3)解:点M、N、P运动的时间为y秒时,点P到点M、N的距离相等,①(2y+4)-y=4y-10-yy=7②2y+4-y=y-(4y-10)y=1.5∴当点M、N、P运动时间为7S或1.5S时,点P到点M,N的距离相等.【考点】此题考查了有理数减法运算,一元一次方程的实际应用,数轴上两点之间的距离公式,正确理解题意应用两点之间的距离公式列出方程是解题的关键.5、(1)①4;②20(2)−11,−2或7(3)y−x=3【解析】【分析】(1)①根据非负数的性质求出a,b的值,根据新定义列出方程,解方程即可得出答案;②求出A′,B′表示的数,根据题意列出方程,解方程即可得出答案;(2)根据C、M、C'三点中有一点是另外两点连线的中点,分三种情况分别计算即可;(3)设点E表示的数为e,点F表示的数为f,根据E'F'=3EF列方程求解即可.(1)解:∵|a+5|≥0,≥0,,∴a+5=0,b−15=0,∴a=−5,b=15.①根据题意得:−5+5n=15,∴n=4;②点表示的数为−5+2n,点表示的数为15+n,根据题意得−5+2n=15+n,∴n=20;(2)解:设点C表示的数为c,则点表示的数为c+6,若点是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论