




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》定向练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A.cm B.2cm C.1cm D.2cm2、如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是(
)A.②④ B.①②④
C.①②③④
D.②③④3、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为()A.30° B.36° C.37.5° D.45°4、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6 B.6.5 C.10 D.135、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7 B. C.8 D.9第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,正方形的边长为4,它的两条对角线交于点,过点作边的垂线,垂足为,的面积为,过点作的垂线,垂足为,△的面积为,过点作的垂线,垂足为,△的面积为,△的面积为,那么__,则__.2、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.3、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是_____.4、如图,在矩形ABCD中,BC=2,AB=x,点E在边CD上,且CEx,将BCE沿BE折叠,若点C的对应点落在矩形ABCD的边上,则x的值为_______.5、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.2、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)的面积;(2)△AOD的周长.
3、如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.4、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.5、如图,△ABC为等边三角形,点D为线段BC上一点,将线段AD以点A为旋转中心顺时针旋转60°得到线段AE,连接BE,点D关于直线BE的对称点为F,BE与DF交于点G,连接DE,EF.(1)求证:∠BDF=30°(2)若∠EFD=45°,AC=+1,求BD的长;(3)如图2,在(2)条件下,以点D为顶点作等腰直角△DMN,其中DN=MN=,连接FM,点O为FM的中点,当△DMN绕点D旋转时,求证:EO的最大值等于BC.-参考答案-一、单选题1、B【解析】【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.2、B【解析】【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF可得这两个三角形的面积相等,再由MC>BE易得S△BEC<2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.【详解】①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确,故选:B.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.3、C【解析】【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴∴∵OB=EB,∴∴∵点O为对角线BD的中点,∴和中∴∴∵EG⊥FG,即∴∴∴故选:C.【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.4、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边=,∴此直角三角形斜边上的中线的长==6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.5、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90,D是边AB的中点,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.二、填空题1、【解析】【分析】由正方形的性质得出、、、、,,得出规律,再求出它们的和即可.【详解】解:四边形是正方形,,,,,,,,,,,;故答案为:;.【点睛】本题是图形的变化题,考查了正方形的性质、三角形面积的计算,解题的关键是通过计算三角形的面积得出规律.2、【解析】【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.【详解】解:∵A,B,C,D是正方形各边的中点∴,∵正方形ABCD的边长为,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的边长为故答案为:.【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.3、10【解析】【分析】根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.【详解】∵四边形ABCD是正方形,∴,,∴.根据题意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面积是10.故答案为:10.【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.4、或【解析】【分析】分两种情况进行解答,即当点落在边上和点落在边上,分别画出相应的图形,利用翻折变换的性质,勾股定理进行计算即可.【详解】解:如图1,当点落在边上,由翻折变换可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如图2,当点落在边上,由翻折变换可知,四边形是正方形,,,故答案为:或.【点睛】本题考查翻折变换,解题的关键是掌握翻折变换的性质以及勾股定理是解决问题的前提.5、【解析】【分析】先根据矩形的性质证明△ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD中,∠AOB=60°,,∵四边形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等边三角形,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.三、解答题1、见解析【分析】首先根据平行四边形的性质推出AD=CB,AD∥BC,得到∠ADE=∠CBF,从而证明△ADE≌△CBF,得到∠AED=∠CFB,即可证明结论.【详解】证:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四边形ABCD是平行四边形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.3、(1)见解析;(2)平行四边形DEFB的周长=【分析】(1)证DE是△ABC的中位线,得DE∥BC,BC=2DE,再证DE=BF,即可得出四边形DEFB是平行四边形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【详解】(1)证明:∵点D,E分别是AC,AB的中点,∴DE是△ABC的中位线,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四边形DEFB是平行四边形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,∴BD=EF,∵D是AC的中点,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.4、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中,利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点四边形ABEF为菱形,,,,在中,,根据题意,,根据平行线间的距离处处相等,.答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.5、(1)见解析;(2)2;(3)见解析【分析】(1)由△ABC是等边三角形,可得∠ABC=60°,由D、F关于直线BE对称,得到BF=BD,则∠BFD=∠BDF,由三角形外角的性质得到∠BFD+∠BDF=∠ABD,则∠BDF=∠BFD=30°;(2)设,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手挖掘机买卖合同15篇
- 个人土地承包合同(14篇)
- 个体户股份转让的协议书(10篇)
- 专科护士知识培训计划课件
- 安徽省蚌埠市经济开发区2026届数学八上期末学业水平测试试题含解析
- 2026届湖南省长沙市明德教育集团数学九上期末复习检测试题含解析
- 2025年北京市个人自行成交版房屋租赁合同
- 2025年二次转租房屋如何签订合同
- 2025南师大仙林校区茶苑住宅停车场汽车库使用权买卖合同
- 工商银行池州市青阳县2025秋招笔试会计学专练及答案
- 中医减肥合同协议书
- 输血知识培训课件
- 粉红税问题成因分析
- 知识产权转化与产权运作制度
- 中国冠心病康复循证实践指南(2024版)解读
- 部编版历史八年级上册第一单元 第2课《第二次鸦片战争》检测卷(后附答案及解析)
- 《北京市二年级上学期数学第二单元试卷》
- 中国老年患者术后谵妄防治专家共识2023
- 山东省济南市舜耕中学2024-2025学年九年级上学期10月月考化学试题(无答案)
- 明股实债合作完整协议
- 2024年“蓉漂人才荟”四川成都市农林科学院招聘高层次人才8人历年【重点基础提升】模拟试题(共500题)附带答案详解
评论
0/150
提交评论