




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是(
)A. B. C. D.2、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:53、下列各组中的两个图形属于全等图形的是(
)A. B.C. D.4、如图,在中,是边上的高,平分,交于点,若,,则的面积等于()A.36 B.48 C.60 D.725、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.30° C.35° D.25°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,图形的各个顶点都在33正方形网格的格点上.则______.2、如图,已知BE=DC,请添加一个条件,使得△ABE≌△ACD:_____.3、已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为__________.4、如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠ABE=_____°.5、如图,在和中,,,直线交于点M,连接.以下结论:①;②;③;④平分.其中正确的是___________(填序号).三、解答题(5小题,每小题10分,共计50分)1、如图,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,过点A作∠GAB=∠FAD,且点G在CB的延长线上.(1)△GAB与△FAD全等吗?为什么?(2)若DF=2,BE=3,求EF的长.2、如图,在中,是边上的一点,,平分,交边于点,连接.(1)求证:;(2)若,,求的度数.3、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.4、如图,,,垂足分别为与相交于点,.(1)求证:;(2)在不添加任何辅助线的情况下,请直接写出图中四对全等的三角形..5、已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.-参考答案-一、单选题1、B【解析】【分析】根据三角形全等的判定做出选择即可.【详解】A、,不能判断,选项不符合题意;B、,利用SAS定理可以判断,选项符合题意;C、,不能判断,选项不符合题意;D、,不能判断,选项不符合题意;故选:B.【考点】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键.2、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,,,故选:C.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.3、B【解析】【分析】根据全等图形的定义,逐一判断选项,即可.【详解】A.两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故选B【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.4、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积.【详解】解:作交于点,∵是边上的高,∴,∵平分,∴∵,,∴.故选:B.【考点】本题考查了三角形的面积和角平分线性质.理解和掌握角的平分线的性质定理是解题的关键.5、C【解析】【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE-∠DAC代入数据进行计算即可得解.【详解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选C.【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.二、填空题1、45°或45度【解析】【分析】通过证明三角形全等得出∠1=∠3,再根据∠1+∠2=∠3+∠2即可得出答案.【详解】解:如图所示,由题意得,在Rt△ABC和Rt△EFC中,∵∴Rt△ABC≌Rt△EFC(SAS)∴∠3=∠1∵∠2+∠3=90°∴∠1+∠2=∠3+∠2=90°故答案为:45°【考点】本题主要考查了全等三角形的判定和性质,由证明三角形全等得出∠1=∠3是解题的关键.2、∠B=∠C【解析】【分析】根据全等三角形的判定方法解答即可.【详解】解:∵BE=DC,∠A=∠A,∴根据AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案为:∠B=∠C.【考点】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.3、或【解析】【分析】以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解.【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则为作或的角平分线,所以或.故答案为:或.【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏.4、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分别为M、N、O,再利用角平分线的性质得出BE为∠ABC的角平分线,即可求解.【详解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分别为M、N、O,如图所示,∵AE、CE是∠DAC和∠ACF的平分线,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分线,∴∠ABE=∠ABC=23.5°.故答案为:23.5.【考点】此题考查角平分线的性质:在角的内部,到角的两边距离相等的点在角的平分线上,反之也是成立的.解题关键是利用角平分线的判定定理.5、①②③【解析】【分析】由SAS证明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正确;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得∠AMO=∠DMO,假设OM平分∠BOC,则可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④错误;即可得出结论.【详解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正确;由三角形的内角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正确;作OG⊥AM于G,OH⊥DM于H,如图所示,△AOC≌△BOD,∴结合全等三角形的对应高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假设OM平分∠BOC,则∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④错误;正确的个数有3个;故答案为:①②③.【考点】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键.三、解答题1、(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得∠ABG=90°=∠D,然后问题可求证;(2)由(1)及题意易得△GAE≌△FAE,GB=DF,进而问题可求解.【详解】解:(1)全等.理由如下∵∠D=∠ABE=90°,∴∠ABG=90°=∠D,在△ABG和△ADF中,,∴△GAB≌△FAD(ASA);(2)∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∵△GAB≌△FAD,∴∠GAB=∠FAD,AG=AF,∴∠GAB+∠BAE=45°,∴∠GAE=45°,∴∠GAE=∠EAF,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS)∴EF=GE∵△GAB≌△FAD,∴GB=DF,∴EF=GE=GB+BE=FD+BE=2+3=5.【考点】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2、(1)见解析(2)50°【解析】【分析】(1)根据平分,可得,即可求证;(2)根据全等三角形的性质可得,再由三角形外角的性质,即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考点】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可.【详解】证明:∵,∴.在和中,∴,∴.【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.4、(1)见解析;(2),,,【解析】【分析】(1)根据垂直的定义得出∠BDF=∠CEF=90°,根据AAS可以推出△BDF≌△CEF,根据全等三角形的性质得出即可;(2)根据全等三角形的性质得出∠B=∠C,BD=CE,DF=EF,求出AB=AC,再根据全等三角形的判定定理推出△ADF≌△AEF,△ABF≌△ACF,△ACD≌△ABE.【详解】证明:,在和中(AAS)
⑵,,,理由是:由(1)知:△BFD≌△CFE,所以DF=EF,∠B=∠C,BD=CE,根据HL可以推出△ADF≌△AEF,所以AD=AE,∵BD=CE,∴AB=AC,根据SAS可以推出△ABF≌△ACF,根据HL可以推出△ACD≌△ABE.【考点】本题考查了全等三角形的性质和判定,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.5、(1)见解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根据全等三角形的判定得出△CAE≌△ABD,进而利用全等三角形的性质得出AE=BD即可;(2)根据全等三角形的判定得出△AEH≌△BDH,进而利用全等三角形的性质解答即可;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,根据全等三角形判定和性质解答即可.【详解】证明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE与△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)连接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH与△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,交HR的延长线于点T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年地面瞄准设备、定位定向设备项目合作计划书
- 2025闵行七宝镇村(合作社)、镇属公司公开招聘20人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年吉林松原经济技术开发区管理委员会公开招聘事业单位工作人员(含专项招聘高校毕业生)(5人)考前自测高频考点模拟试题及答案详解(典优)
- 2025年浙江大学医学院附属儿童医院招聘眼科劳务派遣特检1人考前自测高频考点模拟试题及完整答案详解一套
- 2025贵州毕节市人民政府办公室下属事业单位考调5人考前自测高频考点模拟试题及1套参考答案详解
- 2025广东韶关市翁源县人民法院招聘劳动合同制书记员1人模拟试卷含答案详解
- 2025南昌动物园百花园管理所招聘3人模拟试卷及答案详解(名师系列)
- 2025第十师北屯市高层次和急需紧缺人才引才(20人)模拟试卷及1套完整答案详解
- 2025贵州铜仁市妇幼保健院引进专业技术人才考前自测高频考点模拟试题及答案详解(有一套)
- 出单员个人工作总结
- 工程围墙销售方案(3篇)
- 危急值报告管理课件
- JG/T 9-1999钢椼架检验及验收标准
- 外贸公司简介课件
- 2023产品质量监督抽查工作规范
- 法务合同协议模板下载
- 子宫内膜异位症长期管理
- 数控脉宽脉冲信号发生器
- 高考文言文120个常见实词积累练习(学生版)
- 《实战电池性能测试》课件
- 2025年全国共青团团员知识竞赛题库及答案(共150题)
评论
0/150
提交评论