




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,把沿线段折叠,使点落在点处;若,,,则的度数为(
)A. B. C. D.2、如图,在中,是边上的高,平分,交于点,若,,则的面积等于()A.36 B.48 C.60 D.723、如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=PA,连接PQ交AC于点D,则DE的长为()A.1 B.1.8 C.2 D.2.54、如图所示,是的边上的中线,cm,cm,则边的长度可能是(
)A.3cm B.5cm C.14cm D.13cm5、如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A.4 B.3 C.2 D.1第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.2、如图,给出下列结论:①;②;③;④.其中正确的有_______(填写答案序号).3、如图,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,连接MN,已知MN=4,则BD=_________.4、如图,△ABC中,BD平分∠ABC,AD⊥BD,△BCD的面积为10,△ACD的面积为6,则△ABD的面积是_________.5、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比Ω”(),那么三边长分别为7,24,25的三角形的最小角割比Ω是______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知在ΔABC中AB=AC,∠BAC=90°,分别过B,C两点向过A的直线作垂线,垂足分别为E,F.求证:EF=BE+CE.2、如图,已知和中,,,,,,线段分别交,于点,.(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数.3、如图,已知中,,是内一点,且,试说明的理由.4、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:;(2)证明:∠1=∠3.5、如图,在中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.求证:AF=CM.-参考答案-一、单选题1、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求.【详解】解:∵沿线段折叠,使点落在点处,∴,∴,∵,,∴,∵,∴,∴,故选:C.【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.2、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积.【详解】解:作交于点,∵是边上的高,∴,∵平分,∴∵,,∴.故选:B.【考点】本题考查了三角形的面积和角平分线性质.理解和掌握角的平分线的性质定理是解题的关键.3、C【解析】【分析】过作的平行线交于,通过证明≌,得,再由是等边三角形,即可得出.【详解】解:过作的平行线交于,,是等边三角形,,,是等边三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等边三角形,,,,,,故选:C.【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.4、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论.【详解】解:延长AD至M使DM=AD,连接CM,∵是的边上的中线,∴BD=CD,∵∠ADB=∠CDM,∴,∴MC=AB=5cm,AD=DM=4cm,∴AM=8cm在中,即:3<AC<13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键.5、B【解析】【分析】根据题意逐个证明即可,①只要证明,即可证明;②利用三角形的外角性质即可证明;④作于,于,再证明即可证明平分.【详解】解:∵,∴,即,在和中,,∴,∴,①正确;∴,由三角形的外角性质得:∴°,②正确;作于,于,如图所示:则°,在和中,,∴,∴,∴平分,④正确;正确的个数有3个;故选B.【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.二、填空题1、120【解析】【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【考点】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.2、①③④【解析】【分析】利用AAS可证明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差关系可得∠EAM=∠FAN,可得③正确,利用ASA可证明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正确;根据线段的和差关系可得CM=BN,利用AAS可证明△CDM≌△BDN,可得CD=DB,可得②错误;利用ASA可证明△ACN≌△ABM,可得④正确;综上即可得答案.【详解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正确,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②错误,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正确,综上所述:正确的结论有①③④,故答案为:①③④【考点】本题考查全等三角形的判定与性质,判定两个三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形确定,当利用SAS证明时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.3、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根据△ABM和△BCN是等腰直角三角形,证明△MBN≌△BAE,可得MN=BE,进而可得BD与MN的数量关系即可求解.【详解】解:如图,延长BD到E,使DE=BD,连接AE,∵点D是AC的中点,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案为:2.【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质.4、16【解析】【分析】延长交于,由证明,得出,得出,进而得出,即可得出结果.【详解】如图所示,延长、交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案为:16.【考点】此题考查全等三角形的判定与性质,三角形面积的计算,证明三角形全等得出是解题关键.5、.【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比Ω的定义计算即可.【详解】解:如图示,,,,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则∵,,则()故答案是:.【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键.三、解答题1、见解析【解析】【分析】证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论.【详解】证明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△BEA和△AFC中,∴△BEA≌△AFC().∴EA=FC,BE=AF.∴EF=BE+CF.【考点】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.2、(1)见解析;(2)通过观察可知绕点顺时针旋转,可以得到;(3)【解析】【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.【详解】解:(1)∵,,,∴,∴,,∴,∴;(2)通过观察可知绕点顺时针旋转,可以得到;(3)由(1)知,,∴.【考点】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.3、详见解析【解析】【分析】先证明,再利用全等三角形的性质得到,然后利用等腰三角形三线合一的性质,即可证明.【详解】证明:在与中,∴∴(全等三角形的对应角相等)∵(已知)∴(等腰三角形的三线合一)【考点】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题和等腰三角形三线合一性质的运用.4、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得,再根据对顶角相等可得,然后根据三角形的内角和定理、等量代换即可得证.【详解】(1),,即,在和中,,;(2)由(1)已证:,,由对顶角相等得:,又,.【考点】本题考查了三角形全
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第三单元 运动之美-视觉传达设计-第2课 吉祥物设计(说课稿)-人教版(2024)初中美术七年级上册
- 2024-2025学年新教材高中数学 第八章 立体几何初步 8.1 基本立体图形(3)说课稿 新人教A版必修第二册
- 2025年新能源汽车生物质燃料储存技术挑战与对策报告
- 能源行业数字化转型智能电网优化:新能源接入与消纳技术报告
- 2025年新能源汽车充电服务行业发展趋势及竞争格局分析报告
- 2025年新能源商用车辆市场新能源公交车应用场景优化报告:市场研究
- 2025年储能电池梯次利用在通信基站智能调度管理报告
- 新能源行业企业能源互联网架构与技术变革报告
- 2024-2025学年七年级生物上册 第二单元 第一章 第二节 植物细胞的说课稿 (新版)新人教版
- 2025年中国感光材料行业市场分析及投资价值评估前景预测报告
- 2025年云南交投集团校园招聘管理人员86人笔试参考题库附带答案详解
- 2025年小学语文一年级第一学期期中测试试卷
- 2025年6月上海市高考语文试题卷(含答案)
- (2025年标准)篮球免责协议书
- 码头突发事件培训
- 2024年湖南省龙山县卫生系统招聘考试(护理学专业知识)题含答案
- 热点地区物种多样性保护-洞察及研究
- 2025菏投热电(巨野)有限公司面向市属企业(内部)选聘运维人员60人笔试参考题库附带答案详解(10套)
- 黑龙江介绍课件
- 2025至2030中国汽车A柱行业项目调研及市场前景预测评估报告
- 2026年高考英语专题复习:必背近10高考英语高频词汇表
评论
0/150
提交评论