难点详解京改版数学9年级上册期末试卷带答案详解(达标题)_第1页
难点详解京改版数学9年级上册期末试卷带答案详解(达标题)_第2页
难点详解京改版数学9年级上册期末试卷带答案详解(达标题)_第3页
难点详解京改版数学9年级上册期末试卷带答案详解(达标题)_第4页
难点详解京改版数学9年级上册期末试卷带答案详解(达标题)_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、将抛物线C1:y=(x-3)2+2向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-22、如图,撬钉子的工具是一个杠杆,动力臂,阻力臂,如果动力F的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是(

)A.越来越小 B.不变 C.越来越大 D.无法确定3、当0x3,函数y=﹣x2+4x+5的最大值与最小值分别是()A.9,5 B.8,5 C.9,8 D.8,44、如图,点A、B、C在⊙O上,且∠ACB=100o,则∠α度数为(

)A.160o B.120o C.100o D.80o5、若为锐角,,则等于(

)A. B. C. D.6、抛物线的对称轴为直线.若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、用一个2倍的放大镜照一个△ABC,下列命题中不正确的是(

)A.△ABC放大后角是原来的2倍 B.△ABC放大后周长是原来的2倍C.△ABC放大后面积是原来的2倍 D.以上的命题都不对2、如图,在⊙O中,AB为直径,BC为切线,弦ADOC,直线CD交BA的延长线于点E,连接BD.下列结论正确的是(

)A.CD是⊙O的切线 B.CO⊥DBC.△EDA∽△EBD D.3、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论正确的是(

)A.足球距离地面的最大高度为20mB.足球飞行路线的对称轴是直线C.足球被踢出9s时落地D.足球被踢出1.5s时,距离地面的高度是11m4、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+175、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(

)A. B.C. D.6、如图,在△ABC中,点D,E分别在边AB、AC上,下列条件中能判断△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.7、如图所示,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使与相似,可以添加一个条件下列添加的条件中正确的是(

)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD∙CD第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、某圆的周长是12.56米,那么它的半径是______________,面积是__________.2、如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,4)也在此函数的图象上,则a=_____.3、如图,I是△ABC的内心,∠B=60°,则∠AIC=_____.4、二次函数的最大值是__________.5、如图1是台湾某品牌手工蛋卷的外包装盒,其截面图如图2所示,盒子上方是一段圆弧(弧MN).D,E为手提带的固定点,DE与弧MN所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN交于点F,G.若△CDE是等腰直角三角形,且点C,F到盒子底部AB的距离分别为1,,则弧MN所在的圆的半径为_____.6、我们用符号表示不大于的最大整数.例如:,.那么:(1)当时,的取值范围是______;(2)当时,函数的图象始终在函数的图象下方.则实数的范围是______.7、如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_____.四、解答题(6小题,每小题10分,共计60分)1、某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠.(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?2、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.3、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.4、如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,点O在射线AC上(点O不与点A重合),垂足为D,以点O为圆心,分别交射线AC于E、F两点,设OD=x.(1)如图1,当点O为AC边的中点时,求x的值;(2)如图2,当点O与点C重合时,连接DF;求弦DF的长;(3)当半圆O与BC无交点时,直接写出x的取值范围.5、如图,∠1=∠2=∠3,试找出图中两对相似三角形,并说明为什么?6、如图,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,当BD的长是多少时,图中的两个直角三角形相似?-参考答案-一、单选题1、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式.【详解】解:∵抛物线C1:y=(x-3)2+2,其顶点坐标为(3,2)∵向左平移3个单位长度,得到抛物线C2∴抛物线C2的顶点坐标为(0,2)∵抛物线C2与抛物线C3关于x轴对称∴抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数∴抛物线C3的顶点坐标为(0,-2),二次项系数为-1∴抛物线C3的解析式为y=-x2-2故选:D.【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键.2、A【解析】【分析】根据杠杆原理及的值随着的减小而增大结合反比例函数的增减性即可求得答案.【详解】解:∵动力×动力臂=阻力×阻力臂,∴当阻力及阻力臂不变时,动力×动力臂为定值,且定值>0,∴动力随着动力臂的增大而减小,∵杠杆向下运动时的度数越来越小,此时的值越来越大,又∵动力臂,∴此时动力臂也越来越大,∴此时的动力越来越小,故选:A.【考点】本题主要考查了杠杆原理以及锐角三角函数和反比例函数的增减性,熟练掌握相关知识是解决本题的关键.3、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答.【详解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键.4、A【解析】【分析】在⊙O取点,连接利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案.【详解】解:如图,在⊙O取点,连接四边形为⊙O的内接四边形,.故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键.5、B【解析】【分析】根据tan45°=1求出即可.【详解】∵∠A为锐角,tanA=1,∴∠A=45°.故选B.【考点】本题考查了特殊角的三角函数值,主要考查学生的记忆能力和计算能力.6、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】∵的对称轴为直线,∴,∴,∴一元二次方程的实数根可以看做与函数的有交点,∵方程在的范围内有实数根,当时,,当时,,函数在时有最小值2,∴,故选A.【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键.二、多选题1、ACD【解析】【分析】用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变.【详解】解:A、错误,△ABC放大后角不变,故该选项符合题意;B、正确,△ABC放大后周长是原来的2倍,故该选项不符合题意;C、错误,△ABC放大后面积是相似比的平方,放大后面积是原来的4倍,故该选项符合题意;D、错误,故该选项符合题意.故选:ACD.【考点】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2、ABC【解析】【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD;根据相似三角形的性质得到,于是得到ED•BC=BO•BE.【详解】解:A.证明:连接DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故选项正确,符合题意;B.证明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故选项正确,符合题意;C.证明:∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故选项正确,符合题意;D.证明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故选项错误,不符合题意.故选:ABC.【考点】本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.3、BC【解析】【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【详解】解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故A错误,∴抛物线的对称轴t=4.5,故B正确,∵t=9时,h=0,∴足球被踢出9s时落地,故C正确,∵t=1.5时,h=11.25,故D错误.∴正确的有②③,故选:BC【考点】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.4、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.5、ACD【解析】【分析】根据垂径定理和圆周角定理可以判断A,根据圆周角定理可以判断B,根据圆周角定理、垂径定理以及等角对等边,即可判断C,根据圆周角定理、垂径定理以及平行线的判定,即可判断D.【详解】解:∵AB是圆O的直径,,∴,∴,故A正确;∵AB是圆O的直径,,∴,∵,即,也没有其他条件可以证得和的另外一组内角对应相等,∴不能证得,故B不正确;∵点C是的中点,∴,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故C正确;∵点C是的中点,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故D正确.故选ACD.【考点】本题主要考查了垂径定理、圆周角定理、等腰三角形的判定以及平行线的判定.6、ABD【解析】【分析】根据三角形相似的判断方法判断即可.【详解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合题意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合题意;C、,不能判定△AED∽△ABC,不符合题意;D、∵,∠A=∠A,∴△AED∽△ABC,符合题意.故选:ABD.【考点】此题考查了三角形相似的判断方法,解题的关键是熟练掌握三角形相似的判定方法.7、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A选项判断;根据圆周角定理和有两组角对应相等的两个三角形相似可对B选项判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对C、D选项判断.【详解】解:A、,,,故A选项的添加条件正确;B、,,而,,,故B选项的添加条件正确;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴无法证明与相似,故C选项的添加条件不正确;D、∵,,又,,故D选项的添加条件正确.故选:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.也考查了圆周角定理.三、填空题1、

2米

12.56平方米【解析】【分析】根据周长公式转化为,将C=12.56代入进行计算得到半径,继续利用面积公式,代入半径的值求出面积的结果.【详解】因为C=2πr,所以==2,所以r=2(米),因为S=πr2=3.14×22=12.56(平方米).故答案为:2米

12.56平方米.【考点】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利用公式是解题的关键.2、3【解析】【分析】根据反比例函数的几何意义,可得,从而得到,再将点P(a,4)代入解析式,即可求解.【详解】解:∵点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,∴,∵△OAB的面积为6.∴,即,∴反比例函数的解析式为,∵点P(a,4)也在此函数的图象上,∴,解得:.故答案为:3【考点】本题主要考查了反比例函数的几何意义,反比例函数的图象和性质,熟练掌握反比例函数的几何意义,反比例函数的图象和性质,利用数形结合思想解答是解题的关键.3、120°.【解析】【分析】根据三角形的内切圆的圆心是三角形三个角的平分线的交点即可求解.【详解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的内切圆的圆心是三角形三个角的平分线的交点,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案为120°.【考点】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.4、8【解析】【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值8.故答案为8.【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.5、.【解析】【分析】以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设抛物线的表达式为y=ax2+1,因为△CDE是等腰直角三角形,DE=2,得点E的坐标为(1,2),可得抛物线的表达式为y=x2+1,把当y代入抛物线表达式,求得MH的长,再在Rt△FHM中,用勾股定理建立方程,求得所在的圆的半径.【详解】如图,以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设所在的圆的圆心为P,半径为r,过F作y轴的垂线交y轴于H,设抛物线的表达式为y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴点E的坐标为(1,2),代入抛物线的表达式,得:2=a+1,a=1,∴抛物线的表达式为y=x2+1,当y时,即,解得:,∴FH.∵∠FHM=90°,DE与所在的圆相切,∴,解得:,∴所在的圆的半径为.故答案为.【考点】本题考查了圆的切线的性质,待定系数法求抛物线的表达式,垂径定理.解题的关键是建立合适的平面直角坐标系得出抛物线的表达式.6、

或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围.(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数.【详解】(1)因为表示整数,故当时,的可能取值为0,1,2.当取0时,;当取1时,;当=2时,.故综上当时,x的取值范围为:.(2)令,,,由题意可知:,.①当时,=,,在该区间函数单调递增,故当时,,得.②当时,=0,不符合题意.③当时,=1,,在该区间内函数单调递减,故当取值趋近于2时,,得,当时,,因为,故,符合题意.故综上:或.【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型.7、2【解析】【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长.【详解】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键.四、解答题1、(1)z=﹣x+122(x≥168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案.【详解】解:(1)由题意得:z=80﹣(x﹣42)=﹣x+122,∴入住房间z(间)与定价x(元/间)之间关系式为z=﹣x+122(x≥168);(2)设利润为w元,由题意得:w=(﹣x+122)x﹣36(﹣x+122)﹣4000=﹣x2+131x﹣8392,当x=﹣=262时,w最大,此时z=56.5非整数,不合题意,∴x=260或264时,w最大,∵让客人得到实惠,∴x=260,∴w最大==﹣×2602+131×260﹣8392=8767,∴应将房间定价确定为260元时,获得利润最大,最大利润为8767元.【考点】本题考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性质是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得,由此即可解决问题.【详解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四边形是平行四边形,∴四边形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考点】本题主要考查了角平分线的性质,菱形的判定,相似三角形的性质与判定,矩形的性质,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),则有,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD的解析式为y=kx+b,代入点B、D,,解得,∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x,﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为.(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HG∥y轴,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣t=﹣t时,解得t1=0(舍),t2=,此时点P(,0).综上,点P的坐标为(4,0)或(,0).【考点】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.4、(1);(2);(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论