




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西太原市育英中学7年级数学下册变量之间的关系专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是()A. B. C. D.3、某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则()定价(元)100110120130140150销量(台)801001101008060A.定价是常量 B.销量是自变量 C.定价是自变量 D.定价是因变量4、下列图象中,能反映出投篮时篮球的离地高度与投出后的时间之间关系的是()A. B.C. D.5、如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系6、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快7、在中,它的底边为,底边上的高为,则面积,若为定长,则此式中().A.,是变量 B.,,是变量 C.,是变量 D.以上都不对8、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量.9、梦想从学习开始,事业从实践起步近来,每天登录“学习强国”APP,则下列说法错误的是()学习天数n(天)1234567周积分w/(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.周积分w与学习天数n的关系式为D.天数每增加1天,周积分的增长量不一定相同10、一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、把一个函数的自变量与对应的函数的值分别作为点的___坐标和___坐标,在直角坐标系中描出它的对应点,___的图形叫做这个函数的图象.2、声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y随温度x的升高而_____.在气温为20℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点________米.3、一空水池,现需注满水,水池深4.9m,现以均匀的流量注水,如下表:水的深度(m)0.71.42.12.8注水时间(h)0.511.52由上表信息,我们可以推断出注满水池所需的时间是______h.4、一个水库的水位在最近5h内持续上涨,下表记录了这5h内6个时间点的水位高度,其中t表示时间,y表示水位高度.t/h012345y/m33.33.63.94.24.5据估计这种上涨规律还会持续2h,预测再过2h水位高度将为________m.5、我市出租车收费按里程计算,3千米以内(含3千米)收费10元,超过3千米,每增加1千米加收2元,则当x≥3时,车费y(元)与x(千米)之间的关系式为_____.6、以直角三角形中一个锐角的度数为自变量x,另一个锐角度数y为因变量,则它们的关系式为______.7、拖拉机耕地,油箱内装有油42升,如果每小时耗油5升,写出所剩油量w(升)与时间t(小时)之间的函数关系式___,其中___是常量,___是变量.8、某物流公司的快递车和货车每天沿同一条路线往返于A、B两地,快递车比货车多往返一趟.如图所示,表示货车距离A地的路程y(单位:h)与所用时间x(单位h)的图像,其间在B地装卸货物2h.已知快递车比货车早1h出发,最后一次返回A地比货车晚1h.若快递车往返途中速度不变,且在A、B两地均不停留,则两车在往返途中相遇的次数为________次.9、按下面的运算程序,输入一个实数,那么输出值______.10、表示函数的三种方法是:________,________,________.三、解答题(6小题,每小题10分,共计60分)1、根据下图回答问题:(1)上图表示的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)从图象中观察,哪一年的居民的消费价格最低?哪一年居民的消费价格最高?相差多少?(3)哪些年的居民消费价格指数与1989年的相当?(4)图中A点表示什么?(5)你能够大致地描述1986—2000年价格指数的变化情况吗?试试看.2、如图,自行车每节链条的长度为,交叉重叠部分的圆的直径为.()观察图形,填写下表:链条的节数/节链条的长度/()如果节链条的长度是,那么与之间的关系式是什么?()如果一辆某种型号自行车的链条(安装前)由节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?3、一辆汽车油箱内有油a升,从某地出发,每行驶1小时耗油6升,若设剩余油量为Q升,行驶时间为t/小时,根据以上信息回答下列问题:(1)开始时,汽车的油量______升;(2)在行驶了______小时汽车加油,加了______升,写出加油前Q与t之间的关系式______;(3)当这辆汽车行驶了9小时,剩余油量多少升?4、一游泳池长90m,甲、乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲游了多长时间?游泳的速度是多少?(3)在整个游泳过程中,甲、乙两人相遇了几次?5、某车间的甲、乙两名工人分别同时生产同种零件,一天中他们生产的零件数y(个)与生产时间t(小时)的函数关系如图所示.(1)根据图象填空:①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;②当t=________时,甲、乙生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.6、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与用铝量有如下关系:底面半径x(cm)1.62.02.42.83.23.64.0用铝量y(cm3)6.96.05.65.55.76.06.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由;-参考答案-一、单选题1、C【详解】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.2、D【分析】根据速度,时间与路程的关系得出,变形即可.【详解】解:根据速度,时间与路程的关系得∴.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.3、C【分析】根据自变量、因变量、常量的定义即可得.【详解】由表格可知,定价与销量都是变量,其中,定价是自变量,销量是因变量,故选:C.【点睛】本题考查了常量与变量、自变量与因变量,掌握理解相关概念是解题关键.4、C【分析】根据题意,篮球离地高度与投出时间的关系的图象为抛物线,然后选择即可.【详解】投篮时篮球的离地高度与投出后的时间之间关系的函数图象为抛物线,能够反映出投篮时篮球的离地高度与投出后的时间之间关系的是选项的图象.故选:.【点睛】本题考查了函数图象,主要是对抛物线的理解与抛物线图象的认识,是基础题.5、B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.6、B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.7、A【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.8、D【分析】根据自变量、因变量和常量的定义逐项判断即得答案.【详解】解:A、x是自变量,0.6元/千瓦时是常量,故本选项说法错误,不符合题意;B、y是因变量,x是自变量,故本选项说法错误,不符合题意;C、0.6元/千瓦时是常量,y是因变量,故本选项说法错误,不符合题意;D、x是自变量,y是因变量,0.6元/千瓦时是常量,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了自变量、因变量和常量的定义,属于基础知识题型,熟知概念是关键.9、C【分析】根据表格中的信息逐项判断即可.【详解】解:根据表格可知:周积分w/(分)随着学习天数n(天)的变化而变化,并且n越大,w越大,故选项A、B正确,不符合题意;并不符合所有的,如当n=1时,w=55,不符合关系式,故C错误,符合题意;从第1天到第2天周积分增加55分,第2天到第3天周积分增加50分,第3天到第4天周积分增加40分,第4天到第5天周积分增加54分,第5天到第6天周积分增加46分,第6天到第7天周积分增加50分,故D正确,不符合题意.故选:C.【点睛】本题主要考查了函数中的变量,函数解析式,熟练掌握函数的基础知识是解题的关键.10、B【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【详解】解:公共汽车经历:加速,匀速,减速到站,加速,匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象:只有选项B符合题意;故选:B.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题1、横纵由这些点组成【分析】利用对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象,进而得出即可.【详解】解:把一个函数的自变量与对应的函数的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,由这些点组成的图形叫做这个函数的图象.故答案为:横,纵,由这些点组成.【点睛】此题主要考查了函数图形的定义,熟练根据函数定义得出是解题关键.2、增大;68.6.【分析】从表格可以看到y随x的增大而增大;20℃时,音速为343米/秒,距离为343×0.2=68.6米.【详解】从表格可以看到y随x的增大而增大;20℃时,音速为343米/秒,343×0.2=68.6米,这个人距离发令点68.6米;故答案为:增大;68.6.【点睛】本题考查变量之间的关系,函数的表示方法;能够通过表格观察出变量的变化关系,利用表格的数据计算距离是解题的关键.3、3.5【分析】由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m,由此得出答案;【详解】解:由表格中的数据得出注水时间每增加0.5个小时,水的深度就加深0.7m,∴注水时间每增加1个小时,水的深度就加深1.4m,∴4.9÷1.4=3.5(小时)∴推断出注满水池所需的时间是3.5小时;故答案为:3.5【点睛】本题考查了用表格表示的变量之间的关系,正确理解题意、明确求解的方法是关键.4、5.1【分析】由题意可得到水位随时间上涨的速度,即可求出再过2h水位高度.【详解】由表格可知,每小时水库的水位上涨0.3m,所以2h水库的水位上涨m,m.故答案为:5.1.【点睛】此题考查了变量之间的关系,解题的关键是分析出题目中变量之间的关系.5、y=2x+4【分析】根据题意列出给关系式即可.【详解】由题意可知当x≥3时,车费y(元)与x(千米)之间的关系式为y=10+2(x-3)=2x+4【点睛】此题主要考查函数关系式的表示,解题的关键是根据题意找到等量关系.6、y=-x.【分析】利用直角三角形的两锐角互余可得到y与x的关系式.【详解】解:∵直角三角形中一个锐角的度数为自变量x,另一个锐角度数y为因变量,∴y=90°-x.故答案为y=90°-x.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.7、w=42−5t,42,5,w,t.【分析】利用拖拉机耗油量进而得出所剩油量与时间t的函数关系式即可.【详解】由题意可得出:w=42−5t,其中42,5是常量,w,t是变量.故答案为:w=42−5t,42,5,w,t.【点睛】此题考查常量与变量,函数关系式,解题关键在于掌握其性质定义.8、2【分析】根据图象可知货车往返A、B一趟需8小时,则快递车往返A、B一趟需5小时,依此画出图象,再观察其图象与货车图象相交的次数即可.【详解】解:根据题意可知货车往返A、B一趟需8小时,则快递车往返A、B一趟需5小时,在图上作出快递车距离A地的路程y(单位:km)与所用时间x(单位:h)的图象,由图象可知:两车在往返途中相遇的次数为2次.故答案为:2.【点睛】本题考查了利用图象表示变量之间的关系,正确理解题意、画出快递车的函数图象是解题关键.9、9【分析】先根据图表列出函数关系式,然后计算当时y的值.【详解】当时,.故填9.【点睛】本题考查程序流程图、代数式求值和用关系式表示变量之间的关系,在本题中根据流程图列函数关系式,要注意减法和乘法要先算减法时,需给减法带上括号.10、列表法解析式法图象法【分析】根据函数的三种表示方法:列表法、解析式法、图象法.进行填空即可.【详解】解:表示函数的三种方法是:列表法、解析式法、图象法.故答案为:列表法;解析式法;图象法.【点睛】此题主要考查函数的表示方法,解题的关键是熟知函数的三种方法是:列表法、解析式法、图象法.三、解答题1、(1)图象表示的是我国居民消费价格指数与时间之间的关系.时间是自变量,居民消费价格指数是因变量;(2)1994年最高,1999年最低,相差25;(3)1993年和1995年;(4)1998年的居民消费价格指数约为101;(5)见解析【分析】(1)根据图象进行作答即可;(2)根据图象进行作答即可;(3)根据图象进行作答即可;(4)根据图象进行作答即可;(5)根据图象进行作答即可.【详解】(1)图象表示的是我国居民消费价格指数与时间之间的关系.时间是自变量,居民消费价格指数是因变量.(2)1994年最高,1999年最低,相差25.(3)1993年和1995年.(4)1998年的居民消费价格指数约为101.(5)1986年-1989年,居民的消费价格指数逐年呈上升趋势;1989年-1990年,居民的消费价格指数逐年呈下降趋势;1990年-1994年,居民的消费价格指数逐年呈上升趋势,并且在1994年达到最高消费水平;1994年-1999年,居民的消费价格指数逐年呈下降趋势,并且在1999年消费水平进入低谷;1999年-2000年,居民的消费价格指数逐年呈上升趋势;.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.2、();;;();()102cm.【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;填表如下:链条的节数/节234…链条的长度/cm4.25.97.6…(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.9×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.【点睛】本题主要考查了函数关系式,根据题意得出n节链条的长度与每节长度之间的关系是解决问题的关键.3、(1)42;(2)5,24,;(3)当这辆汽车行驶了9小时,剩余油量12升.【分析】(1)直接由图象中的数据得出即可;(2)由加油前汽车每小时的耗油量,即可得出关系式;(3)先求出加油后3小时的耗油量即可求得剩余量.【详解】解:(1)由图象可知,开始时,汽车的油量42升,故答案为:42;(2)由图象可知,在行驶了5小时汽车加油,加了36﹣12=24升,∵加油前汽车每小时的耗油6升,∴加油前汽车剩余油量Q=42﹣6t,故答案为:5,24,;(3)由题意,加油后汽车每小时的耗油6升,∴加油后剩余油量Q=(升),故当这辆汽车行驶了9小时,剩余油量12升.【点睛】本题考查用图象表示变量间的关系、有理数的混合运算,理解题意,能从图象中获取有效信息是解答的关键.4、(1)甲游了三个来回,乙游了两个来回;(2)甲游了180s,速度为3m/s;(3)在整个游泳过程中,甲、乙两人相遇了5次.【分析】(1)观察图形看各个图形包括几个相同的图形,(2)根据甲的图象找出横坐标的最大值,再根据速度=路程时间即可(3)观察图象,看两图形有几个交点即可.【详解】(1)观察图形甲游了三个来回,乙游了两个来回.(2)观察图形可得甲游
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新能源电动汽车采购及技术研发战略合作框架协议
- 2025年专业医疗实验室设备购置与全面维护管理合同
- 2025学年度小学食堂均衡营养餐服务合同书
- 专属2025年财务咨询保密协议与综合服务合同模板
- 2025年高端外企国际化人才引进及服务保障合同
- 2025年企业核心商标群组转让与许可协议
- 地灾防治知识培训内容课件
- 海南消防安全知识培训课件
- 2025年现代教育机构自助图书馆设备与系统安装合同
- 2025年度CFG桩施工工期延误补偿及责任划分合同
- 2025年中国邮政集团工作人员招聘考试笔试试题(含答案)
- 云计算环境下的数据安全与隐私保护研究
- 规范大件运输管理制度
- 药学处方审核培训
- T-MSC 005-2024 灵芝孢子油生产加工技术规范
- 职业院校班主任辅导员培训
- 贸易意向合作协议书范本
- 校园活动讲安全
- DB37T 5230-2022 岩棉复合板外墙外保温系统应用技术规程
- 外科腹腔镜手术护理
- 浅析立体心何模块在新高考中的命题方向研究课件高三数学一轮复习
评论
0/150
提交评论