




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》章节训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A. B. C.6 D.2、如图所示,AB=CD,AD=BC,则图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形.下面是某个合作小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量其内角是否均为直角 D.测量对角线是否垂直4、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为()A.40° B.45° C.50° D.55°5、如图,在长方形ABCD中,AB=6,BC=8,点E是BC边上一点,将△ABE沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,则BE的长是()A.4 B.3 C.4或8 D.3或6第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.2、如图,△ABC中,AC=BC=3,AB=2,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB上的动点,则PE+PF的最小值是_____.3、如图,矩形ABCD中,AB=9,AD=12,点M在对角线BD上,点N为射线BC上一动点,连接MN,DN,且∠DNM=∠DBC,当DMN是等腰三角形时,线段BN的长为___.4、如图,在矩形ABCD中,BC=2,AB=x,点E在边CD上,且CEx,将BCE沿BE折叠,若点C的对应点落在矩形ABCD的边上,则x的值为_______.5、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.三、解答题(5小题,每小题10分,共计50分)1、已知矩形ABCD,AB=6,BC=10,以BC所在直线为x轴,AB所在直线为y轴,建立如图所示的平面直角坐标系,在CD边上取一点E,将△ADE沿AE翻折,点D恰好落在BC边上的点F处.(1)求线段EF长;(2)在平面内找一点G,①使得以A、B、F、G为顶点的四边形是平行四边形,请直接写出点G的坐标;②如图2,将图1翻折后的矩形沿y轴正半轴向上平移m(m>0)个单位,若以A、O、F、G为顶点的四边形为菱形,请求出m的值并写出点G的坐标.2、如图:已知△BCD是等腰直角三角形,且∠DCB=90°,过点D作AD∥BC,使AD=BC,在AD上取一点E,连结CE,点B关于CE的对称点为B1,连结B1D,并延长B1D交BA的延长线于点F,延长CE交B1F于点G,连结BG.(1)求证:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG长;(3)在(2)的条件下,H为直线BG上一点,使△HCG为等腰三角形,则所有满足要求的BH的长是.(直接写出答案)3、在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段.点A固定在格点上.(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a=,b=,=;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为,.4、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.5、如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CF⊥DE于点F,且DF=EF.(1)求证:AD=CE.(2)若CD=5,AC=6,求△AEB的面积.-参考答案-一、单选题1、B【解析】【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,,,在中,,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键.2、D【解析】【分析】根据平行四边形的判定与性质,求解即可.【详解】解:∵AB=CD,AD=BC∴四边形为平行四边形∴,,,∴、又∵,∴、∴图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质.3、C【解析】【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果.【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩形的对角线互相相等且平分,所以垂直与否与矩形的判定无关,故错误.故选:C.【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键.4、A【解析】【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5、D【解析】【分析】当为直角三角形时,有两种情况:①当点F落在矩形内部时连接,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点A、F、C共线,即沿折叠,使点B落在对角线上的点F处,则,,可计算出然后利用勾股定理求解即可;②当点F落在边上时.此时为正方形,由此即可得到答案.【详解】解:当为直角三角形时,有两种情况:①当点F落在矩形内部时,如图所示.连接,在中,,,∴,∵△ABE沿折叠,使点B落在点F处,∴,BE=EF,当为直角三角形时,只能得到,∴∴点A、F、C共线,即△ABE沿折叠,使点B落在对角线上的点F处,∴,∴,设BE=EF=x,则EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②当点F落在边上时,如图所示,由折叠的性质可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴为正方形,∴,综上所述,BE的长为3或6.故选D.【点睛】本题考查折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质,正方形的性质与判定以及勾股定理.解题的关键是要注意本题有两种情况,需要分类讨论,避免漏解.二、填空题1、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.2、##【解析】【分析】首先证明四边四边形ABCD是菱形,作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,求出ME即可.【详解】解:作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,此时P′E′+P′F=ME′,过点A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小为.故答案为:.【点睛】本题考查翻折变换,等腰三角形的性质,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、15或24或【解析】【分析】分三种情形讨论求解即可.【详解】解:①如图1中,当NM=ND时,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如图2中,当DM=DN时,此时M与B重合,∴BC=CN=12,∴BN=24;③如图3中,当MN=MD时,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,设BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,综上,当DMN是等腰三角形时,线段BN的长为15或24或.故答案为:15或24或.【点睛】本题考查了矩形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,注意不能漏解.4、或【解析】【分析】分两种情况进行解答,即当点落在边上和点落在边上,分别画出相应的图形,利用翻折变换的性质,勾股定理进行计算即可.【详解】解:如图1,当点落在边上,由翻折变换可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如图2,当点落在边上,由翻折变换可知,四边形是正方形,,,故答案为:或.【点睛】本题考查翻折变换,解题的关键是掌握翻折变换的性质以及勾股定理是解决问题的前提.5、12【解析】【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】解:∵如图所示,D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴△DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.三、解答题1、(1)103;(2)①点G的坐标为(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,−6)或m=6,G(−8,6).或m=【分析】(1)由矩形的性质得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折叠性质得EF=DE,AF=AD=10,则CE=6﹣EF,由勾股定理求出BF=OF=8,则FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三种情况,当AB为平行四边形的对角线时;当AF为平行四边形的对角线时;当BF为平行四边形的对角线时,分别求解点G的坐标即可;②分三种情况讨论,当OF为对角线时,由菱形的性质得OA=AF=10,则矩形ABCD平移距离m=OA﹣AB=4,即OB=4,设FG交x轴于H,证出四边形OBFH是矩形,得FH=OB=4,OH=BF=8,则HG=6,如图,当AO为菱形的对角线时,当AF为菱形的对角线时,结合矩形与菱形的性质同理可得出答案.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折叠性质得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如图所示:当AB为平行四边形的对角线时,AG=BF=8,AG∥∴点G的坐标为:(﹣8,6);当AF为平行四边形的对角线时,AG'=BF=8,AG'∥∴点G'的坐标为:(8,6);当BF为平行四边形的对角线时,FG''=AB=6,FG''∥∴点G''的坐标为:(8,﹣6);综上所述,点G的坐标为(﹣8,6)或(8,6)或(8,﹣6);②如图,当OF为菱形的对角线时,∵四边形AOGF为菱形,∴OA=AF=10,∴矩形ABCD平移距离m=OA﹣AB=10﹣6=4,即OB=4,设FG交x轴于H,如图所示:∵OA∥FG,∴∠FBO=∠BOH=∠OHF=90°,∴四边形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴点G的坐标为:(8,﹣6).如图,当AO为菱形的对角线时,则AB=OB=6,GB=BF=8,AO⊥GF,∴m=6,G(−8,6).如图,当AF为菱形的对角线时,同理可得:OA=OF,OA=m+6,且GF∥∴A(0,m+6),F(8,m),∴(m+6)解得:m=7∴A(0,25所以∴G(8,73+综上:平移距离m与G的坐标分别为:m=4,G(8,−6)或m=6,G(−8,6)或m=7【点睛】本题是四边形综合题目,考查了矩形的判定与性质、菱形的判定与性质,坐标与图形性质、平行四边形的性质、勾股定理、折叠变换的性质、平移的性质等知识;熟练掌握矩形的性质和折叠的性质是解题的关键.2、(1)证明过程见解析;(2)BG的长为4;(3)2或6﹣4或或6+4【分析】(1)连结BB1交CG于点M,交CD于点Q,证明四边形ABCD是正方形,再根据对称的性质得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)设BG交AD于点N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根据勾股定理得到BM,最后利用勾股定理计算即可;(3)根据点G的位置不同分4种情况进行讨论计算即可;【详解】(1)证明:如图1,连结BB1交CG于点M,交CD于点Q,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BC=DC,∠BCD=90°,∴四边形ABCD是正方形,∵点B1与点B关于CE对称,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如图1,设BG交AD于点N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ•CM=BC•CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的长为4.(3)解:如图1,由(2)得CM=2,GM=4,∴CG=2+4=6,如图2,CH=CG=6,则∠CHG=∠CGH=45°,∴∠GCH=90°,∴GH=,∴BH=GH﹣BG=6﹣4=2;如图3,HG=CG=6,且点H与点B在直线FB1的同侧,∴BH=HG﹣BG=6﹣4;如图4,CH=GH,则∠HCG=∠HGC=45°,∴∠CHG=90°,∴CH2+GH2=CG2,∴2GH2=(6)2,∴GH=3,∴BH=BG﹣GH=4﹣3=;如图5,HG=CG=6,且点H与点B在直线FB1的异侧,∴BH=HG+BG=6+4,综上所述,BH的长为2或6﹣4或或6+4,故答案为:2或6﹣4或或6+4.【点睛】本题主要考查了全等三角形的综合,勾股定理,垂直平分线的判定与性质,正方形的性质,准确分析计算是解题的关键.3、(1),2,;(2)4或5.【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可.【详解】解:(1)由题意得:a=,b=2,
∴;
故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求.
菱形ABCD的面积为=×4×2=4或菱形ABCD的面积=×=5,
故答案为:4或5.【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题.4、(1)见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏镇江市精神卫生中心第一批编外岗位(非事业编制)招聘8人模拟试卷附答案详解(考试直接用)
- 2025年福建省福州市少年儿童图书馆招聘3人模拟试卷及答案详解(名师系列)
- 2025河南新乡医学院辅导员招聘12人模拟试卷及完整答案详解一套
- 2025江西吉安市市属国有企业资产经营有限公司招聘1人模拟试卷及答案详解(必刷)
- 2025年光伏材料采购合同
- 2025年农产品种子购销合同
- 2025-2026学年安徽省部分学校高三(上)9月月考数学试卷(含答案)
- 2025年养老护理员(中级)养老护理员护理培训考试试卷(附答案)
- 2025年师德知识竞赛题库及答案
- 清廉建设考试题目及答案
- T-SZEIA 001-2024 温室气体产品碳足迹量化方法与要求 变电站电气设备
- 2025年湖南省安全员-B证考试题库及答案
- 北师大版六年级下册数学全册同步分层作业设计含答案解析
- 简易钢结构雨棚施工承包合同范本
- 苏州市前期物业管理委托合同范本
- 2022年冀教版七年级上册数学第一次月考试卷
- 《气管支架临床应用》课件
- 导数的应用-函数的零点问题(5题型分类)-2025年高考数学一轮复习(解析版)
- 8·12天津滨海新区爆炸事故调查报告分析及反思
- 2024新指南:中国阿尔茨海默病早期预防指南解读课件
- 江苏省南京市联合体2024-2025学年八年级上学期期中考试语文试题含答案
评论
0/150
提交评论