




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建福州屏东中学7年级数学下册第四章三角形章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列四个图形中,BE不是△ABC的高线的图是()A. B.C. D.2、以下列长度的各组线段为边,能组成三角形的是()A.,, B.,,C.,, D.,,3、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是()A.8 B.10 C.9 D.164、如图,已知为的外角,,,那么的度数是()A.30° B.40° C.50° D.60°5、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是()A.2 B.3 C.4 D.76、根据下列已知条件,不能画出唯一的是()A.,, B.,,C.,, D.,,7、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为()A.6 B.8 C.6或8 D.4或68、如图,在正方形ABCD中,E,F分别为AD,CD上的点,且AE=CF,则下列说法正确的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠29、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选()组.A.,, B.,, C.,, D.,,10、已知:如图,∠BAD=∠CAE,AB=AD,∠B=∠D,则下列结论正确的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,正三角形△ABC和△CDE,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有_____.(填序号)2、如图,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面积为58,△ADC的面积为30,则△ABD的面积等于______.3、如图,,,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为________.4、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.5、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.6、如图,△ABE≌△ACD,∠A=60°,∠B=20°,则∠DOE的度数为_____°.7、如图,中,,,是的中点,的取值范围为________.8、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接AB.以AB为边作等腰Rt△ABE,(B、A、E按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.9、某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米;则河的宽度为_____米.10、如图,某同学把一块三角形的玻璃打碎成了三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带____(填序号)去配,这样做的科学依据是_______.三、解答题(6小题,每小题10分,共计60分)1、如图△ABC中,已知∠A=60°,角平分线BD、CE交于点O.(1)求∠BOC的度数;(2)判断线段BE、CD、BC长度之间有怎样的数量关系,请说明理由.2、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角.求作:射线OC,使.作法:如图,①在射线OA上任取一点D;②以点О为圆心,OD长为半径作弧,交OB于点E;③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;④作射线OC.则OC为所求作的射线.完成下面的证明.证明:连接CD,CE由作图步骤②可知______.由作图步骤③可知______.∵,∴.∴(________)(填推理的依据).3、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则.(直接写出结果)4、已知:如图,若ABCD,AB=CD且BE=CF.求证:AE=DF.5、平行线是平面几何中最基本、也是非常重要的图形.在解决某些几何问题时,若能根据问题的需要,添加适当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决问题:(1)如图(1),ABCD,试判断∠B,∠D与∠E的关系;(2)如图(2),已知ABCD,在∠ACD的角平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.6、如图,点B,F,C,E在一条直线上,AB=DE,AC=DF,BF=EC.AB和DE的位置关系是什么?请说明你的理由.-参考答案-一、单选题1、C【分析】利用三角形的高的定义可得答案.【详解】解:BE不是△ABC的高线的图是C,故选:C.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.2、C【分析】根据三角形三条边的关系计算即可.【详解】解:A.∵2+4=6,∴,,不能组成三角形;B.∵2+5<9,∴,,不能组成三角形;C.∵7+8>10,∴,,能组成三角形;D.∵6+6<13,∴,,不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.3、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=S【详解】解:如图,延长BD交AC于点E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故选:C.【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.4、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、B【分析】根据全等三角形的性质可得,根据即可求得答案.【详解】解:ABC≌DEF,点B、E、C、F在同一直线上,BC=7,EC=4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.6、B【分析】根据三角形存在的条件去判断.【详解】∵,,,满足ASA的要求,∴可以画出唯一的三角形,A不符合题意;∵,,,∠A不是AB,BC的夹角,∴可以画出多个三角形,B符合题意;∵,,,满足SAS的要求,∴可以画出唯一的三角形,C不符合题意;∵,,,AB最大,∴可以画出唯一的三角形,D不符合题意;故选B.【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.7、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、C【分析】由“SAS”可证△ABE≌△CBF,可得∠AEB=∠2,即可求解.【详解】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明三角形全等是解题的关键.9、D【分析】利用三角形的三边关系,即可求解.【详解】解:根据三角形的三边关系,得:A、,不能组成三角形,不符合题意;B、,不能够组成三角形,不符合题意;C、,不能够组成三角形,不符合题意;D、,能够组成三角形,符合题意.故选:D【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边只差小于第三边是解题的关键.10、D【分析】根据已知条件利用ASA证明可得AC=AE,BC=DE,进而逐一进行判断.【详解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C选项错误;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A选项错误;D选项正确.故选:D.【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.二、填空题1、①②③⑤【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据③△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.2、28【分析】延长交于,由证明,得出,得出,进而得出,即可得出结果.【详解】如图所示,延长交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案为:28.【点睛】此题考查全等三角形的判定与性质,三角形面积的计算,证明三角形全等得出是解题关键.3、2或6或2【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【详解】解:设BE=t,则BF=2t,AE=6-t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,综上所述,AG=2或AG=6.故答案为:2或6.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4、75【分析】设CB与ED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.【详解】如图所示,设CB与ED交点为G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案为:75.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.5、15【分析】根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.【详解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可证△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案为:15.【点睛】本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.6、100【分析】直接利用三角形的外角的性质得出∠CEO=80°,再利用全等三角形的性质得出答案.【详解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案为:100.【点睛】此题主要考查了全等三角形的性质以及三角形的外角的性质,求出∠CEO=80°是解题关键.7、【分析】延长AD到E,使,连接,证,得到,在中,根据三角形三边关系定理得出,代入求出即可.【详解】解:延长AD到E,使,连接,如图所示:∵AD是BC边上的中线,∴,在和中,,∴,∴,在中,,∴,∴,故答案为:.【点睛】本题考查了全等三角形的性质和判定,三角形的三边关系定理的应用,熟练掌握相关基本性质是解题的关键.8、-2【分析】过E作EF⊥x轴于F,由三垂直模型,得EF=OA,AF=OB,设A(a,0),可求得E(a+4,a),点E在直线y=x-4上,当OE⊥CD时,OE最小,据此求出坐标即可.【详解】解:如图,过E作EF⊥x轴于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取点C(4,0),点D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴点E在直线CD上,当OE⊥CD时,OE最小,此时△EFO和△ECO为等腰Rt△,∴OF=EF=2,此时点E的坐标为:(2,-2).故答案为:-2【点睛】本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.9、5【分析】将题目中的实际问题转化为数学问题,利用全等三角形的判定方法证得两个三角形全等即可得出答案.【详解】解:由题意知,在和中,,,∴,即河的宽度是5米,故答案为:5.【点睛】题目主要考查全等三角形的应用,熟练应用全等三角形的判定定理和性质是解题关键.10、③ASA【分析】由题意已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法进行分析即可.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;ASA.【点睛】本题主要考查全等三角形的判定方法的实际应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题1、(1)120°;(2)BC=BE+CD,理由见解析【分析】(1)利用角平分线的定义以及三角形内角和定理计算即可;(2)只要证明∠BOF=∠BOE=60°,可得∠COD=∠COF=60°即可证明.【详解】解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60°=120°.(2)BC=BE+CD.理由如下:在BC上截取BF=BE,连接OF,∵BD平分∠ABC,∴∠EBO=∠FBO,在△OBE和△OBF中,,∴△OBE≌△OBF(SAS),∴∠BOE=∠BOF,∵∠BOC=120°,∴∠BOE=60°,∴∠BOF=∠COF=∠COD=60°,∵OC=OC,∠OCD=∠OCF,∴△COD≌△COF(ASA).∴CF=CD,∴BC=BF+CF=BE+CD.【点睛】本题考查全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.2、OE;CE;全等三角形的对应角相等【分析】根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.【详解】证明:连接CD,CE由作图步骤②可知___OE___.由作图步骤③可知__CE___.∵,∴.∴(__全等三角形对应角相等__)故答案为:OE;CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.3、(1)证明见解析;(2)证明见解析;(3)或【分析】(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.【详解】(1)证明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE,在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;(2)作FD⊥AC于D,由(1)得,FD=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E点为BC中点;(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴AG=CG+AC=5.5,∴,同理,当点E在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境友好的建筑垃圾堆放处理技术
- 健身数据可视化技术-第1篇-洞察及研究
- 法律文本阐释困境-洞察及研究
- 2025年事业单位笔试-上海-上海麻醉学(医疗招聘)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-重庆-重庆食品检验工四级(中级工)历年参考题库含答案解析
- 机械图纸基础知识培训班课件
- 机械发动机培训课件
- 新解读《GB-T 26126-2018商品煤质量 煤粉工业锅炉用煤》
- 司法警察基础理论课件
- 网络招聘面试题目及答案
- 农产品经纪人基础技能培训手册
- 2024年湖南省古丈县人民医院公开招聘医务工作人员试题带答案详解
- 海南省2024-2025学年高一下学期学业水平诊断(二)物理
- 2025年食品安全抽查考试复习题库模拟题及答案指导
- 海尔冰箱BCD-257DVC使用说明书
- 2025年高考真题-政治(河南卷) 含解析
- 农民教育培训课件
- 2025年江西省高安市吴有训实验学校英语七年级第二学期期末质量检测模拟试题含答案
- 市容管理课件
- 追溯培训课件
- 离职人员资产管理制度
评论
0/150
提交评论