难点详解山东省荣成市中考数学真题分类(一元一次方程)汇编同步测评试题(含答案解析版)_第1页
难点详解山东省荣成市中考数学真题分类(一元一次方程)汇编同步测评试题(含答案解析版)_第2页
难点详解山东省荣成市中考数学真题分类(一元一次方程)汇编同步测评试题(含答案解析版)_第3页
难点详解山东省荣成市中考数学真题分类(一元一次方程)汇编同步测评试题(含答案解析版)_第4页
难点详解山东省荣成市中考数学真题分类(一元一次方程)汇编同步测评试题(含答案解析版)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省荣成市中考数学真题分类(一元一次方程)汇编同步测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、方程2y﹣=y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣.这个常数应是(

)A.1 B.2 C.3 D.42、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体上面和下面所标数字相等,则x的值是(

)A. B.0 C.﹣2 D.﹣13、某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为(

)A.100元 B.105元 C.110元 D.120元4、关于的一元一次方程的解为,则的值为(

)A.9 B.8 C.5 D.45、解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=46、方程的解是(

)A.方程有唯一解 B.方程有唯一解C.当方程有唯一解 D.当时方程有无数多个解7、解方程的最佳方法是A.去括号 B.去分母C.移项合并项 D.以上方法都可以8、下列方程中,解是的方程是(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、当________时,整式与互为相反数;2、我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)3、用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”_____个.4、有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为、,则原数表示为________,新数表示为________;题目中的相等关系是:①________;②_______,故列方程组为_______.5、挖一条水渠,甲、乙两队单独做分别需要20天、15天完成.现在先由甲队单独挖6天,然后两人合作挖一条水渠要用____天.6、方程x+5=(x+3)的解是________.7、已知,则a的相反数是______.三、解答题(7小题,每小题10分,共计70分)1、【感受新知】如图1,射线OC在∠AOB在内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中一个角的度数是另一个角度数的三倍,则称射线OC是∠AOB的“和谐线”.[注:本题研究的角都是小于平角的角.](1)一个角的角平分线_______这个角的“和谐线”.(填是或不是)(2)如图1,∠AOB=60°,射线OC是∠AOB的“和谐线”,求∠AOC的度数.【运用新知】(3)如图2,若∠AOB=90°,射线OM从射线OA的位置开始,绕点O按逆时针方向以每秒15°的速度旋转,同时射线ON从射线OB的位置开始,绕点O按顺时针方向以每秒7.5°的速度旋转,当一条射线回到出发位置的时候,整个运动随之停止,旋转的时间为t(s),问:当射线OM、ON旋转到一条直线上时,求t的值.【解决问题】(4)在(3)的条件下,请直接写出当射线ON是∠BOM的“和谐线”时t的值.2、为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?3、某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?4、梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你能过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.5、解方程:(1)(2)(3)6、有些含绝对值的方程,可以通过讨论去掉绝对值号,转化为一元一次方程求解.例如:解方程x+2|x|=3.解:当x≥0时,原方程可化为x+2x=3,解得x=1,符合题意;当x<0时,原方程可化为x-2x=3,解得x=-3,符合题意.所以,原方程的解为x=1或x=-3.仿照上面的解法,解方程-8=-.7、解下列方程:(1)2(x-1)=6;

(2)4-x=3(2-x);

(3)5(x+1)=3(3x+1)-参考答案-一、单选题1、C【解析】【详解】设被阴影盖住的一个常数为k,原方程整理得,k=-y+,把代入k=-y+,中得,k=-×()+==3,故选C.2、C【解析】【分析】利用正方体及其表面展开图的特点,列出方程5x+2=-8解题.【详解】解:根据题意得,5x+2=-8,解得:x=-2,故选C.【考点】本题考查了正方体相对两个面上的数字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、A【解析】【分析】设该商品每件的进价为元,根据题意可知商品按零售价的8折再降价10元销售即销售价=,利用售价-进价=利润得出方程为,求出即可.【详解】解:设该商品每件的进价为元,则,解得,即该商品每件的进价为100元.故选A.【考点】本题考查了一元一次方程的应用,得到商品售价的等量关系是解题的关键.4、C【解析】【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x的一元一次方程2xa-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C.【考点】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.5、B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【考点】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.6、B【解析】【分析】根据解一元一次方程的步骤,把未知数的系数化为1,即可得出答案【详解】解:∵∴方程有唯一解;故选:B【考点】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题的关键7、C【解析】【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项.【详解】解:移项得,(x-1)-(x-1)=4+1,合并同类项得,x-1=5,解得x=6.故选C.【考点】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.8、D【解析】【分析】使方程左右两边相等的未知数的值是方程的解.把x=3代入以上各个方程进行检验,可得到正确答案.【详解】解:对于A,x=3代入方程,左边=18,右边=20,左边≠右边,故此选项不符合题意;对于B,x=3代入方程,左边=5,右边=4,左边≠右边,故此选项不符合题意;对于C,x=3代入方程,左边=0,右边=3,左边≠右边,故此选项不符合题意;对于D,x=3代入方程,左边=50,右边=50,左边=右边,故此选项符合题意;故选:D.【考点】本题考查了一元一次方程的解,解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.二、填空题1、0【解析】【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【详解】解:∵代数式与2x+1互为相反数,∴+2x+1=0,解得x=0.故答案为:0.【考点】此题考查了解一元一次方程,以及相反数,熟练掌握解一元一次方程的解法是解题的关键.2、46【解析】【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解.【详解】解:设有人一起分银子,根据题意建立等式得,,解得:,银子共有:(两)故答案是:46.【考点】本题考查了一元一次方程在生活中的实际应用,解题的关键是:读懂题目意思,根据题目中的条件,建立等量关系.3、5【解析】【分析】设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.【详解】解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为5.4、

【解析】【分析】设个位上和十位上的数字分别为x,y,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为,新数表示为,两个等量关系为:①个位上的数字+十位上的数字=8;②新数+36=原数;列方程组为;故答案为:;;;;.【考点】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.5、6【解析】【分析】设他们合作挖一条水渠的时间是x天,根据总工作量为单位“1”,列方程求出x的值即可得出答案.【详解】解:设他们合作挖一条水渠的时间是x天,根据题意得:,解得:x=6,所以,他们合作挖一条水渠的时间是6天.故答案是:6.【考点】本题考查了一元一次方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题主要用到公式:工作总量=工作效率×工作时间.6、x=-7【解析】【详解】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.7、1【解析】【分析】先求解的值,再求解的相反数即可.【详解】解:a的相反数是故答案为:【考点】本题考查的是一元一次方程的应用,相反数的含义,掌握“相反数的定义”是解本题的关键.三、解答题1、(1)不是;(2)15°,45°,20°,40°;(3)4,12,20;(4)7.2,6,10.8,【解析】【分析】(1)结合“和谐线”和角平分线的定义,即可得到答案;(2)分四种情况讨论,由“和谐线”的定义,列出方程可求∠AOC的度数;(3)根据题意,分三种情况讨论,列出方程可求t的值;(4)根据题意,分四种情况进行讨论,列出方程,分别解方程,即可求出t的值.【详解】解:∵一个角的平分线平分这个角,且这个角是所分两个角的2倍,∴一个角的角平分线不是这个角的“和谐线”;故答案为:不是;(2)根据题意,∵∠AOB=60°,射线OC是∠AOB的“和谐线”,可分为四种情况进行分析:①当∠AOB=3∠AOC=60°时,∴∠AOC=20°;②当∠AOB=3∠BOC=60°时,∴∠BOC=20°,∴∠AOC=40°;③当∠AOC=3∠BOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=45°;④当∠BOC=3∠AOC时,∵∠AOC+∠BOC=∠AOB=60°,∴∠AOC=15°;(3)由题意得,∵(秒),∴运动时间范围为:0<t≤24,则有①当OM与ON第一次成一个平角时,90+15t+7.5t=180,解得:t=4(秒);②当OM与ON成一个周角时,90+15t+7.5t=360,解得:t=12(秒);③当OM与ON第二次成一个平角时,90+15t+7.5t=180+360,解得:t=20(秒)综上,t的值为4或12或20秒;(4)当OM与OB在同一条直线上时,有(秒),当OM与ON成一个周角时,有,∴;根据“和谐线”的定义,可分为四种情况进行分析:①当∠MON=3∠BON时,如图:∵,,∴,解得:;②当∠BOM=3∠BON时,如图:∵,,∴,解得:;③当∠BOM=3∠MON时,如图:∵,,∴,解得:;④当∠BON=3∠MON时,如图:∵,,∴,解得:;【考点】本题考查一元一次方程的应用,和谐线的性质,角之间的和差关系,找等量关系列出方程是解决问题的关键,属于中考常考题型2、(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【解析】【分析】(1)设乙工程队每天能完成绿化的面积是x平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=(元);选择方案②乙队单独完成所需费用=(元);选择方案③甲、乙两队全程合作完成所需费用=(元);∴选择方案①完成施工费用最少.【考点】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.3、(1)当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时,在甲商店购买更合算;买40盒时,在乙商店购买更合算.【解析】【分析】(1)设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:100×5+(x-5)×25=0.9×100×5+0.9x×25,解方程求解即可;(2)分别计算购买20盒,40盒乒乓球时,甲,乙店所需付款,比较后选择价格低的即可.【详解】解:(1)设该班购买乒乓球x盒,则在甲商店购买应付的费用:100×5+(x-5)×25=25x+375.在乙商店购买应付的费用:0.9×100×5+0.9x×25=22.5x+450.当两种优惠办法付款一样时,则有25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)买20盒时,在甲商店购买应付的费用:25×20+375=875(元),在乙商店购买应付的费用:22.5×20+450=900(元),故在甲商店购买更合算;买40盒时,在甲商店购买应付的费用:25×40+375=1375(元),在乙商店购买应付的费用:22.5×40+450=1350(元),故在乙商店购买更合算.4、(1)不能在限定时间内到达考场;(2)见解析【解析】【分析】【详解】:解:(1)(分钟),,

不能在限定时间内到达考场.

(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.

先将4人用车送到考场所需时间为(分钟).

0.25小时另外4人步行了1.25km,此时他们与考场的距离为(km)

设汽车返回后先步行的4人相遇,

,解得.

汽车由相遇点再去考场所需时间也是.

所以用这一方案送这8人到考场共需.

所以这8个个能在截止进考场的时刻前赶到.

方案2:8人同时出发,4人步行,先将4人用车送到离出发点的处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场.

由处步行前考场需,

汽车从出发点到处需先步行的4人走了,

设汽车返回(h)后与先步行的4人相遇,则有,解得,

所以相遇点与考场的距离为.

由相遇点坐车到考场需.

所以先步行的4人到考场的总时间为,

先坐车的4人到考场的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论