版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《一次函数》专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中A(1,1),B(2,1),C(2,2),D(1,2),用信号枪沿直线y=﹣2x+b发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为()A.3<b<6 B.2<b<6 C.3≤b≤6 D.2<b<52、一次函数y=kx-m,y随x的增大而增大,且km<0,则在坐标系中它的大致图象是()A. B.C. D.3、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A.7 B.6 C.4 D.84、下列曲线中,表示y是x的函数的是()A. B.C. D.5、如图,直线y=与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PM的最小值为()A.5 B.2 C.4 D.3第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、某图书馆对外出租书的收费方式是:每本书出租后的前两天,每天收0.6元,以后每天收0.3元,那么一本书在出租后天后,所收租金与天数的表达式为_____.2、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为,一边长为,那么在60,S,a中,变量有________________个.3、点、是直线y=2x+b上的两点,则___(填“>”或“=”或“<”).4、如图,平面直角坐标系中,直线与轴、轴分别交于、两点,以为边在第二象限内作正方形,在轴上有一个动点,当的周长最小的时候,点的坐标是______.5、直线与轴、轴分别交于点、,是轴上一点,若将沿折叠,点恰好落在轴上,则点的坐标为_______.三、解答题(5小题,每小题10分,共计50分)1、已知:A、B都是x轴上的点,点A的坐标是(3,0),且线段AB的长等于4,点C的坐标是(0,2).(1)直接写出点B的坐标.(2)求直线BC的函数表达式.2、我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,连云港地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式.(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?3、如图,在平面直角坐标系xOy中,正比例函数y=12x的图象为直线l,已知两点A(1)在直线l位于第一象限的部分找一点C,使得∠CAB=∠CBA.用直尺和圆规作出点C(不写画法,保留作图痕迹);(2)直接写出点C的坐标为;(3)点P在x轴上,求PA+PC的最小值.4、虎林市某农场米业公司有A种精装米40箱,B种精装米60箱,分配给上海、北京两销售点.其中70箱分给上海销售点,30箱分给北京销售点,且一星期内100箱精装米全部售出.两销售点售出两种精装米每箱利润(元)见下表.A种精装米每箱利润(元)B种精装米每箱利润(元)上海销售点10085北京销售点8075(1)设分给上海销售点A种精装米x箱,公司所获总利润为W元,求总利润W与x的函数关系式,并写出x的取值范围.(2)公司要求总利润不低于8750元,请你帮助该公司设计,有几种分配方案.(3)公司经理王叔叔听说学校正在开展“艺体2+1”活动,王叔叔拿出(2)方案中的最大利润的10﹪,且全部用完,购买了100元/个的篮球、80元/个的排球两种体育器材,捐赠给学校,请直接写出购买方案.5、【直观想象】如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;【数学发现】当一个动点P(x,0)到一个定点的距离为d,我们发现d是x的函数;【数学理解】动点P(x,0)到定点A(5,0)的距离为d,当x=时,d取最小值;【类比迁移】设动点P(x,0)到两个定点M(1,0)、N(4,0)的距离和为y.①尝试写出y关于x的函数关系式及相对应的x的取值范围;②在给出的平面直角坐标系中画出y关于x的函数图像;③当y>9时,x的取值范围是.-参考答案-一、单选题1、C【解析】【分析】根据题意确定直线y=-2x+b经过哪一点b最大,哪一点b最小,然后代入求出b的取值范围.【详解】解:∵直线y=-2x+b中k=-2<0,∴此直线必然经过二四象限.由题意可知当直线y=-2x+b经过A(1,1)时b的值最小,即-2×1+b=1,b=3;当直线y=-2x+b过C(2,2)时,b最大即2=-2×2+b,b=6,∴能够使黑色区域变白的b的取值范围为3≤b≤6.故选:C.【点睛】本题考查一次函数的应用、一次函数图象上点的坐标特征,利用数形结合的思想解答是解答本题的关键.2、B【解析】【分析】根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解.【详解】解:一次函数y=kx-m,y随x的增大而增大,可得,,可得,则一次函数y=kx-m,经过一、三、四象限,故选:B【点睛】本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号.3、A【解析】【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接AC,OB交于点D,∵C是直线与y轴的交点,∴点C的坐标为(0,2),∵OA=4,∴A点坐标为(4,0),∵四边形OABC是矩形,∴D是AC的中点,∴D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,∴,∴,故选A.【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.4、C【解析】【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.5、C【解析】【分析】根据题意过点P作PM⊥AB,进而依据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM△ABO,即可求出答案.【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,∵直线y=x﹣3与x轴、y轴分别交于点A,B,∴点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,AB=PB=OP+OB=5,∴△PBM△ABO(AAS),∴PM=AO=4.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点以及全等三角形的性质与判定等知识点,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、【解析】【分析】根据每本书出租后的前两天,每天收0.6元,以后每天收0.3元,列出一本书在出租后天后,所收租金与天数的表达式即可.【详解】解:由题意得,,故答案为:.【点睛】本题考查了一次函数的应用,读懂题意,根据题意列出所收租金与天数的表达式是解本题的关键.2、2【解析】【分析】根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可【详解】解:∵篱笆的总长为60米,∴S=(30-a)a=30a-a2,∴面积S随一边长a变化而变化,∴S与a是变量,60是常量故答案为:2.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.3、【解析】【分析】根据k>0时,y随x增大而增大即可解答.【详解】解:在直线
y=2x+b中,k=2>0,∴
随x增大而增大,又∵-1<2,∴y1<y2,故答案为:<.【点睛】本题主要考查一次函数图象的增减性,根据k值判断一次函数图象的增减性是解题的关键.4、(0,)【解析】【分析】把x=0和y=0分别代入y=x+1,求出A,B两点的坐标,过D作DE垂直于x轴,证△DEA≌△AOB,证出OA=DE,AE=OB,即可求出D的坐标;先作出D关于y轴的对称点D′,连接CD′,CD′与y轴交于点M,则MD′=MD,求出D′的坐标,进而求出CD′的解析式,即可求解.【详解】解:y=x+1,当x=0时,y=1,当y=0时,x=-2,∴点A的坐标为(-2,0)、B的坐标为(0,1),OA=2,OB=1,由勾股定理得:AB=,过D作DE垂直于x轴,∵四边形ABCD是正方形,∴∠DEA=∠DAB=∠AOB=90°,AD=AB=CD=,∴∠DAE+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAE=∠ABO,在△DEA与△AOB中,,∴△DEA≌△AOB(AAS),∴OA=DE=2,AE=OB=1,∴OE=3,所以点D的坐标为(-3,2),同理:点C的坐标为(-1,3),作D关于y轴的对称点D′,连接CD′,CD′与y轴交于点M,∴MD′=MD,MD′+MC=MD+MC,此时MD′+MC取最小值,∵点D(-3,2)关于y轴的对称点D′坐标为(3,2),设直线CD′解析式为y=kx+b,把C(-1,3),D′(3,2)代入得:,解得:,∴直线CD′解析式为y=x+,令x=0,得到y=,则M坐标为(0,).故答案为:(0,).【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数的性质,能求与x轴y轴的交点坐标和理解有关最小值问题是解本题的关键,难点是理解MD+MC的值最小如何求.5、(0,)或(0,-6)【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】解:如图所示,当点M在y轴正半轴上时,设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,由直线y=-x+4可得,A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∴CO=AC-AO=5-3=2,∴点C的坐标为(-2,0).设M点坐标为(0,b),则OM=b,CM=BM=4-b,∵CM2=CO2+OM2,∴(4-b)2=22+b2,∴b=,∴M(0,);如图所示,当点M在y轴负半轴上时,OC=OA+AC=3+5=8,设M点坐标为(0,b),则OM=-b,CM=BM=4-b,∵CM2=CO2+OM2,∴(4-b)2=82+b2,∴b=-6,∴M点(0,-6),故答案为:(0,)或(0,-6).【点睛】本题综合考查了翻折变换以及一次函数图象上点的坐标特征,题中利用折叠知识与直线的关系以及直角三角形等知识求出线段的长是解题的关键.三、解答题1、(1)B(7,0)或(﹣1,0);(2)y=−27【解析】【分析】(1)根据A的坐标和AB=4,分B在A点的左边和右边两种情况求得B的坐标;(2)根据待定系数法求得即可.【详解】解:(1)∵A,B都是x轴上的点,点A的坐标是(3,0),且线段AB的长等于4,∴B(7,0)或(−1,0);(2)设直线BC的解析式为y=kx+b,∵直线经过C(0,2),∴直线BC的解析式为y=kx+2,当B(7,0)时,0=7k+2,解得k=−2当B(−1,0)时,0=−k+2,解得k=2,∴直线BC的函数表达式为y=−27x+2【点睛】本题考查了待定系数法求一次函数的解析式,解题的关键是根据题意求得B的两个坐标.2、(1)y=20−6x;(2)16.4℃;(3)9千米【解析】【分析】(1)结合题意列关系式,即可得到答案;(2)结合(1)的结论,根据一次函数的性质计算,即可得到答案;(3)结合(1)的结论,通过求解一元一次方程,即可得到答案.【详解】(1)根据题意,得:y=20−6x;(2)结合(1)的结论,得山顶的温度大约是:20−0.6×6=20−3.6=16.4℃;(3)结合(1)的结论,得:20−6x=−34∴x=9∴飞机离地面的高度为9千米.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.3、(1)见解析;(2)(4,2);(3)PA+PC的最小值是5【解析】【分析】(1)作线段AB的垂直平分线交直线l于点C即为所求;(2)由线段垂直平分线的定义得点D是线段AB的中点,则D(0,2),CD∥x轴,将y=2代入y=12x得x=4,即可得点C(3)作点A关于x轴的对称点A',连接A'C交x轴于点P,则PA=PA',要使PA+PC最小,即PA'+PC最小,故当P、【详解】解:(1)作线段AB的垂直平分线交直线l于点C即为所求,∵CD是线段AB的垂直平分线,∴CA=CB,∴∠CAB=∠CBA;(2)∵CD是线段AB的垂直平分线,∴点D是线段AB的中点,CD∥x轴,∵A(0,1)、B(0,3).∴D(0,2),将y=2代入y=12x得x∴点C的坐标为(4,2),故答案为:(4,2);(3)作点A关于x轴的对称点A',连接A'C交x∴PA=PA∴要使PA+PC最小,即PA∴当P、A',C三点共线时,PA'∵A(0,1),∴A'∵C(4,2),∴A'∴PA+PC的最小值是5.【点睛】本题主要考查了线段垂直平分线的性质,一次函数图像上的点的坐标特征,轴对称最短路径问题,两点距离公式,解题的关键在于能够熟练掌握相关知识进行求解.4、(1)W=10x+8400,10≤x≤40;(2)六种分配方案;(3)购买篮球8个,排球1个或购买篮球4个,排球6个【解析】【分析】(1)设分给上海销售点A种精装米x箱,则分给上海销售点B种精装米70−x箱,分给北京销售点A种精装米40−x箱,分给北京销售点B种精装米30−40−x(2)根据题意可得10x+8400≥8750,解出即可求解;(3)根据题意可得:公司所获总利润W随x的增大而增大,从而得到当x=40时,公司所获总利润W最大,最大利润为10×40+8400=8800元,然后设购买篮球a个,排球b个,可得到b=11−54a【详解】解:(1)设分给上海销售点A种精装米x箱,则分给上海销售点B种精装米70−x箱,分给北京销售点A种精装米40−x箱,分给北京销售点B种精装米30−40−xW=100x+85(70-x)+80(40-x)+75(x-10)=10x+8400∵x≥040−x≥070−x≥0∴10≤x≤40;(2)根据题意得:10x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025市政施工员考试试题及答案
- 移动式操作平台专项施工方案
- 2025年数据保护与隐私法考试卷及答案
- 市场营销学期末考试试卷附答案
- 新版《医疗器械经营质量管理规范》培训试题(含答案)
- 药剂科药物配制技术指南
- 焦虑症护理科普
- 普通话正音训练
- STM32贪吃蛇程序设计
- 2025年注册计量师(一级)考试高分技巧试卷及答案
- 矿山井下照明专线施工方案
- 2025年金融学专升本金融市场学试卷(含答案)
- 2025年学校意识形态自查报告
- 2025广西交通职业技术学院招聘教师70人考试参考试题及答案解析
- 2025年全国新闻记者职业资格考试新闻采编实务综合能力测试题及答案
- 国寿财险总公司招聘笔试题库
- 施工现场风险评估方案
- 2025年中国聚α-烯烃(PAO)基润滑剂行业市场分析及投资价值评估前景预测报告
- 2025年文化旅游产业融合发展财务状况改善计划书
- 2024-2025学年广东省实验中学七年级(上)期中语文试卷
- 2025年广东惠州市产业投资集团有限公司公开招聘(10人)笔试题库历年考点版附带答案详解
评论
0/150
提交评论