考点解析四川省绵竹市中考数学真题分类(平行线的证明)汇编专项测试试题(含答案解析)_第1页
考点解析四川省绵竹市中考数学真题分类(平行线的证明)汇编专项测试试题(含答案解析)_第2页
考点解析四川省绵竹市中考数学真题分类(平行线的证明)汇编专项测试试题(含答案解析)_第3页
考点解析四川省绵竹市中考数学真题分类(平行线的证明)汇编专项测试试题(含答案解析)_第4页
考点解析四川省绵竹市中考数学真题分类(平行线的证明)汇编专项测试试题(含答案解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵竹市中考数学真题分类(平行线的证明)汇编专项测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如下图,在下列条件中,能判定AB//CD的是(

)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠42、下列四个选项中不是命题的是(

)A.对顶角相等B.过直线外一点作直线的平行线C.三角形任意两边之和大于第三边D.如果,那么3、如图,将三角形纸片沿折叠,当点落在四边形的外部时,测量得,,则的度数为(

)A. B. C. D.4、如图,在△ABC中,∠A=90°,BE,CD分别平分∠ABC和∠ACB,且相交于F,,于点G,则下列结论①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正确的结论是(

)A.①②③ B.①③④ C.①③④⑤ D.①②③④5、如图,将一副直角三角板按如图所示叠放,其中,,,则的大小是(

)A. B. C. D.6、如图所示,下列推理及括号中所注明的推理依据错误的是(

)A.,(内错角相等,两直线平行)B.,(两直线平行,同旁内角互补)C.,(两直线平行,同旁内角互补)D.,(同位角相等,两直线平行)7、如图,在中,,,,,连接BC,CD,则的度数是()A.45° B.50° C.55° D.80°8、在四边形ABCD中,如果∠B+∠C=180°,那么

()A.AB∥CD B.AD∥BC C.AB与CD相交 D.AB与DC垂直第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.2、如图,给出下列条件:①;②;③;④;⑤.其中,一定能判定∥的条件有_____________(填写所有正确的序号).3、如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,,则_________.4、如图,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度数等于_____.5、如图,在中,,,,则x=______.6、将△ABC沿着DE翻折,使点A落到点A′处,A′D、A′E分别与BC交于M、N两点,且DEBC.已知∠A′NM=27°,则∠NEC=_____.7、如图,在△ABC中,∠ACB=60°,D为△ABC边AC上一点,BC=CD,点M在BC的延长线上,CE平分∠ACM,且AC=CE.连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.以下结论:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,则AB∥CE;④若BE平分∠ABC中,则EB平分∠DEC;正确的有_____(只填序号)三、解答题(7小题,每小题10分,共计70分)1、已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,CD⊥BC(已知)∴∠ABC=90°,∠BCD=90°()即∠1+∠3=90°,∠2+∠4=90°又∵∠1=∠2()∴=()∴BE∥CF()2、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,,.(1)求证:;(2)求的度数.3、在①DE=BC,②,③AE=AC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,AC平分,D是AC上的一点,.若______,求证:.4、已知:如图,点A、B、C在一条直线上,AD∥BE,∠1=∠2,求证:∠A=∠E.5、【教材呈现】如图是华师版七年级下册数学教材第76页的部分内容.请根据教材提示,结合图①,将证明过程补充完整.【结论应用】(1)如图②,在△中,∠=60°,平分∠,平分∠,求∠的度数.(2)如图③,将△的∠折叠,使点落在△外的点处,折痕为.若∠=,∠=,∠=,则、、满足的等量关系为(用、、的代数式表示).6、如图,已知,垂足为点N,与交于点M.求证:.(用反证法证明)7、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.-参考答案-一、单选题1、C【解析】【详解】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.2、B【解析】【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A、对顶角相等,故选项是命题;B、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C、三角形任意两边之和大于第三边,故选项是命题;D、如果,那么,故选项是命题;故选:B.【考点】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.3、B【解析】【分析】根据折叠∠A′=∠A,根据邻补角性质求出∠A′DA,再根据三角形外角性质即可求解.【详解】解:根据折叠可知∠A′=∠A,∵∠1=70°,∴∠A′DA=180°-∠1=110°,∴根据三角形外角∠A′=∠2-∠A′DA=152°-110°=42°,∴∠A=42°.故选B.【考点】本题考查折叠性质,邻补角性质,三角形外角性质,掌握折叠性质,邻补角性质,三角形外角性质是解题关键.4、C【解析】【分析】根据平行线的性质与角平分线的定义即可判断①;只需要证明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判断③;根据角平分线的定义和三角形内角和定理先推出,即可判断④⑤;根据现有条件无法推出②.【详解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正确;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正确;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分别平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正确;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正确;根据现有条件,无法推出CA平分∠BCG,故②错误;故选C.【考点】本题主要考查了平行线的性质,角平分线的定义,三角形内角和定理,熟知平行线的性质,角平分线的定义是解题的关键.5、C【解析】【分析】根据直角三角形的性质可得∠BAC=45°,根据邻补角互补可得∠EAF=135°,然后再利用三角形的外角的性质可得∠AFD=135°+30°=165°.即可.【详解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选:C.【考点】此题主要考查了三角形的内角和,三角形的外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.6、C【解析】【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:.,(内错角相等,两直线平行),正确;.,(两直线平行,同旁内角互补),正确;.,(两直线平行,同旁内角互补),故选项错误;.,(同位角相等,两直线平行),正确;故选:C.【考点】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.7、B【解析】【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】解:连接AC并延长交EF于点M.,,,,,,,故选B.【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.8、A【解析】【分析】∠B与∠C是直线AB,CD被直线BC所截构成的同旁内角,根据∠B+∠C=180°,得到AB∥CD.【详解】∵∠B+∠C=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【考点】正解找出“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题1、同位角相等,两直线平行.【解析】【详解】利用三角板中两个60°相等,可判定平行,故答案为:同位角相等,两直线平行考点:平行线的判定2、①③④【解析】【分析】根据平行线的判定方法对各小题判断即可解答.【详解】①∵,∴∥(同旁内角互补,两直线平行),正确;②∵,∴∥,错误;③∵,∴∥(内错角相等,两直线平行),正确;④∵,∴∥(同位角相等,两直线平行),正确;⑤不能证明∥,错误,故答案为:①③④.【考点】本题考查了平行线的判定,熟练掌握平行线的判定方法是解答的关键.3、40°##40度【解析】【分析】根据入射角等于反射角,可得,根据三角形内角和定理求得,进而即可求解.【详解】解:依题意,,∵,,,∴,.故答案为:40.【考点】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.4、110°##110度【解析】【分析】由三角形的内角和可求得∠BAC=60°,再由角平分线的定义得∠BAD=30°,利用三角形的外角性质即可求∠ADC的度数.【详解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案为:110°.【考点】本题主要考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解答的关键是对相应的知识的掌握.5、130【解析】【分析】由可得,再由,即可求解;【详解】解:∵,,∴∵,∴,∴∴故答案为:130.【考点】本题主要考查三角形的内角和定理,掌握三角形的内角和定理并灵活应用是解本题的关键.6、126°【解析】【分析】利用平行线的性质求出∠DEN=27°,再利用翻折不变性得到∠AED=∠DEN=27°,再根据平角的性质即可解决问题.【详解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不变性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案为126°.【考点】本题考查翻折变换,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、①②③④【解析】【分析】①可推导∠ACB=∠ACE=60°,进而可证全等;②先证△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,从而推导得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的关系,结合∠DEC=∠A可推导得出.【详解】解:∵∠ACB=60°,∴∠ACM=180°−∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正确;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正确;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正确;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正确;综上,正确的结论有:①②③④.故答案为:①②③④.【考点】本题主要考查了全等三角形的判定定理和性质定理,角平分线的定义,三角形的内角和定理以及平行线的判定定理,正确找出图中的全等三角形是解题的关键.三、解答题1、见解析【解析】【分析】由垂直的定义得∠ABC=90°,∠BCD=90°,即∠1+∠3=90°,∠2+∠4=90°,求出∠3=∠4,即可得出结论.【详解】解:,∵AB⊥BC,CD⊥BC(已知),∴∠ABC=90°,∠BCD=90°(垂直的定义),即∠1+∠3=90°,∠2+∠4=90°,又∵∠1=∠2(已知),∴∠3=∠4(等角的余角相等),∴BE∥CF(内错角相等,两直线平行).【考点】本题考查了平行线的判定以及垂直的定义;熟练掌握平行线的判定方法是解题的关键.2、(1)证明见解析;(2).【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出.(1)证明:∵,,∴,∵AE平分,∴,∵,∴,∴,∴,(2)解:,∴,∵,且,∴.【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出.3、证明见解析【解析】【分析】选②,根据角平分线的性质可得∠EAD=∠BAC.由三角形的内角和定理可得,,即可求解,若选③,证明,即可求解.【详解】若选②;证明:∵AC平分∠BAE,∴∠EAD=∠BAC.∵∠E=∠C,∴.∵,.∴∠ADE=∠ABC.若选③,证明:∵AC平分∠BAE,∴.在△ABC和△ADE中,∴.∴.【考点】本题考查了三角形的内角和定理,三角形求得的性质与判定,综合运用以上知识是解题的关键.4、见解析【解析】【分析】先根据平行线的性质由AD∥BE得∠A=∠EBC,再根据平行线的判定由∠1=∠2得DE∥AC,则∠E=∠EBC,所以∠A=∠E.【详解】证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥AC,∴∠E=∠EBC,∴∠A=∠E.【考点】考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5、教材呈现:见解析;(1)120°;(2)【解析】【分析】【教材呈现】利用两直线平行,同位角相等,内错角相等,把三角形三个内角转化成一个平角,从而得证.【结论应用】(1)利用角平分线的性质得出两个底角之和,从而求出∠P度数.(2)根据四边形BCFD内角和为360°,分别表示出各角得出等式即可.【详解】解:教材呈现:∵CD∥BA,∴∠1=∠ACD.∵∠3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论