难点解析青岛版8年级数学下册期末试卷附答案详解(能力提升)_第1页
难点解析青岛版8年级数学下册期末试卷附答案详解(能力提升)_第2页
难点解析青岛版8年级数学下册期末试卷附答案详解(能力提升)_第3页
难点解析青岛版8年级数学下册期末试卷附答案详解(能力提升)_第4页
难点解析青岛版8年级数学下册期末试卷附答案详解(能力提升)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级数学下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为3.6km,则M、C两点间的距离为()A.1.8km B.3.6km C.3km D.2km2、如图,折叠长方形ABCD纸片,点D落在BC边的点F处(AE为折痕).已知AB=8,BC=10,则EC等于(

)A.3 B.4 C.5 D.63、如图,已知在正方形中,厘米,,点在边上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点在线段上由点向点运动,设运动时间为t秒,当ΔBPE与ΔCQP全等时,的值为()A.2 B.2或1.5 C.2.5 D.2.5或24、如图是一个放置在水平桌面上的锥形瓶,向锥形瓶中匀速注水,则水面高度与注水时间之间的函数关系图象大致是(

)A. B.C. D.5、下列四个数中,是无理数的为(

)A.0 B. C.-2 D.0.56、若关于x的不等式组无解,且关于y的分式方程有正整数解,则所有符合条件的整数a之和为(

)A.-5 B.-8 C.-6 D.-47、在3.14,,,π,,0,0.1001000100001…中,无理数有(

)A.1个 B.2个 C.3个 D.4个8、已知点A(x1,3),B(x2,﹣1)在一次函数y=﹣x﹣2的图象上,则()A.x1≤x2 B.x1≥x2 C.x1<x2 D.x1>x2第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S7的值为_____.2、81的平方根是_____,64的立方根是_____.3、如图,△OAB1,△B1A1B2,△B2A2B3,…,△BnAnBn+1都是面积为的等边三角形,边AO在y轴上,点B1,B2,B3,…,Bn,Bn+1都在直线y=x上,点A1,A2,A3,...,An都在直线y=x的上方,观察图形的构成规律,用你发现的规律直接写出点A2022的坐标为_____.4、已知直线,点A与原点O关于直线l对称,则线段的最大值是_________.5、小明想测量旗杆的高度,他先将升旗的绳子拉到旗杆底端,并在绳子对应旗杆底端的位置上打了一个结,然后将绳子拉到离旗杆底部4m处,绳头恰好接触到底面,他发现此时绳头距打结处约1m,小明计算出旗杆的高度为_____m.6、如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,若AC⊥A'B',则∠BAC的度数是_____.7、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.三、解答题(7小题,每小题10分,共计70分)1、如图,四边形ABCD是矩形纸片,,,在上取一点,将纸片沿AE翻折,使点D落在BC边上的点F处.(1)AF的长=______;(2)BF的长=______;(3)CF的长=______;(4)求DE的长.2、某邮递公司收费方式有两种:方式一:邮递物品不超过3千克,按每千克2元收费;超过3千克,3千克以内每千克2元,超过的部分按每千克1.5元收费.方式二:基础服务费4元,另外每千克加收1元.小王通过该邮递公司邮寄一箱物品的质量为x千克(x>3).(1)请分别直接写出小王用两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在如图所示的直角坐标系中画出图象;(2)若两种付费方式所需邮递费用相同,求这箱物品的质量;(3)若采用“方式二”所需要邮递费用比采用“方式一”便宜5元,求这箱物品的质量.3、在△ABC中,∠ACB=90°,AC=BC=10,点D为AB的中点,连结DC.点E以每秒1个单位长度的速度从点A出发,沿射线AC方向运动,连结DE.过点D作DF⊥DE,交射线CB于点F,连结EF.设点E的运动时间为t(秒).(1)如图,当0<t<10时.①求证:∠ADE=∠CDF;②试探索四边形CEDF的面积是否为定值?若为定值,求出这个定值;若不为定值,请说明理由;(2)当t≥10时,试用含t的代数式表示△DEF的面积.4、已知:如图,线段a和∠α.求作:矩形ABCD,使AB=a,∠CAB=∠α.5、求下列各式中的(1)(2)6、下面是某数学兴趣小组探究用不同方法作线段AB的垂直平分线的讨论片段,请仔细阅读,并完成相应任务,(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧在上方交于点,连接CA,CB;(2)以点C为圆心,适当长为半径作弧,分别交边AC,于点,E;(3)分别作线段CD,CE的垂直平分线,两线交于点P;(4)作直线CP.直线CP即为线段AB的垂直平分线.简述理由如下:连接PD,PE,由作图知,PD=PC=PE,所以△PCD≌△PCE,则,即射线CP是∠ACB的平分线∵CA=CB,∴CP⊥AB,且平分线段,∴直线CP是线段AB的垂直平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下:如图(2),(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧在上方交于点,作射线CA,CB;(2)以点C为圆心,适当长为半径作弧,分别交射线CA,CB,于点,E;(3)连接BD,AE,交于点Q;(4)作直线CQ.直线CQ即为线段AB的垂直平分线.任务:(1)小明得出△PCD≌△PCE的依据是.(填序号)①SSS

②SAS

③AAS

④ASA

⑤HL(2)小军作图得到的直线CQ是线段AB的垂直平分线吗?请判断,并说明理由;(3)如图(3),在等腰三角形ABC中,CA=CB,,∠CAB=75°,点D,分别是射线,CB上的动点,且CD=CE,连接,AE,交点为点P.当∠PAB=45°时,直接写出线段的长.7、小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:类别价格A款玩偶B款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.-参考答案-一、单选题1、A【解析】【分析】根据直角三角形斜边上的中线等于斜边上的一半可求解.【详解】解:∵AC⊥BC,∴∠ACB=90°,∵M点是AB的中点,AB=3.6km,∴CM=AB=1.8km.故选:A.【点睛】本题主要考查直角三角形斜边上的中线,掌握直角三角形斜边上的中线的性质是解题的关键.2、A【解析】【分析】根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】解:∵四边形ABCD为矩形,∴DC=AB=8;∠B=∠C=90°;由题意得:AF=AD=BC=10,由勾股定理得:BF2=AF2-AB2=102-82,∴BF=6,∴CF=BC-BF=10-6=4;设EF=DE=x,EC=8-x;在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,解得:x=5,∴EF=DE=5,∴EC=CD-DE=8-5=3,故选:A.【点睛】本题主要考查了翻折变换的性质、勾股定理;运用勾股定理得出方程是解决问题的关键.3、D【解析】【分析】分两种情况讨论:若,则,;若,则厘米,厘米;【详解】解:①当点的运动速度与点的运动速度都是2厘米/秒,若,,∵厘米,厘米,∴厘米,∴厘米,∴运动时间(秒);②当点的运动速度与点的运动速度不相等,∴,∵,∴要使与全等,只要厘米,厘米即可.∴点,运动的时间(秒),故选:D.【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.4、B【解析】【分析】根据注水速度与水面高度的关系和锥形瓶的形状,即可得到函数大致图像,此题得解.【详解】解:向锥形瓶中匀速注水,则水面上升的速度由慢变快,最后到了到达锥形瓶上部时,上升的速度不变,即图象开始的曲线由缓到陡,最后是一条线段,故符合题意的图象是选项B.故选:B.【点睛】熟练掌握自变量与因变量之间的关系,此题需要重点关注的是锥形瓶的形状.5、B【解析】【分析】根据无限不循环小数是无理数对各选项进行判断即可.【详解】解:A、C、D中均为有理数,不符合题意;B中为无理数,符合题意,故选:B.【点睛】本题考查了无理数.解题的关键在于理解无理数.6、C【解析】【分析】先解出不等式组,根据不等式组无解,可得,再求出分式方程的根,然后根据分式方程有正整数解,可得a取0或-1或-2或-5,再由当时,是增根,从而得到a取-1或-5,即可求解.【详解】解:,解不等式①得:,解不等式②得:,∵不等式组无解,∴,,去分母得:,即,解得:,∵分式方程有正整数解,∴,且为正整数,∴取-1或-2或-3或-6,即a取0或-1或-2或-5,当时,,此时是增根,不合题意,舍去,∵,∴a取-1或-5,∴所有符合条件的整数a之和为.故选:C【点睛】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的方法是解题的关键.7、C【解析】【分析】根据无理数是无限不循环小数求解【详解】解:,故无理数有:π,,0.1001000100001…,共个,故选:C.【点睛】本题考查了对实数分类的理解,掌握无理数的定义,准确求得一个数的立方根是解决本题的关键.8、C【解析】【分析】根据k=-1<0,得出函数图像从左上到右下变化,即函数值y随x的增大而减小,根据函数值3>-1,得出x1<x2即可.【详解】解:∵一次函数y=﹣x﹣2,k=-1<0,∴函数图像从左上到右下变化,即函数值y随x的增大而减小,∵3>-1,∴x1<x2.故选C.【点睛】本题考查一次函数的性质,掌握一次函数的性质是解题关键.二、填空题1、【解析】【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【详解】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则Sn=()n-1,∴S7=()6=.故答案为:.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n-1”.2、

±9

4【解析】【分析】根据平方根与立方根的性质即可求出答案.【详解】解:∵∴81的平方根为±9,∵∴64的立方根为4.故答案为:±9,4.【点睛】本题考查立方根与平方根的概念,解题的关键是正确理解平方根与立方根的概念.3、,【解析】【分析】过作轴,垂足为,由条件可求得,利用直角三角形的性质可求得,,可求得的坐标,同理可求得、的坐标,则可得出规律,可求得的坐标.【详解】如图,,△,△,都是边长为2的等边三角形,,,在轴上,轴,轴,过作轴,垂足为,点在在直线上,设,,是面积为的等边三角形,都是边长为的等边三角形,,,的坐标为,,同理,、,,的坐标为,,故答案为,.【点睛】本题为规律型题目,利用等边三角形和直角三角形的性质求得的坐标,从而总结出点的坐标的规律是解题的关键.4、【解析】【分析】如图,对于一次函数y=k(x−1)+3,过定点B(1,3).O、A关于直线y=k(x−1)+3对称,可得OB=AB=,再根据OA≤OB+AB=2,可得结论.【详解】解:如图,对于一次函数y=k(x−1)+3,过定点B(1,3).∵O、A关于直线y=k(x−1)+3对称,∴OB=AB=,∵OA≤OB+AB=2,∴OA的最大值为2.故答案为:2.【点睛】本题考查轴对称的性质,一次函数的性质,勾股定理等知识,解题的关键是发现直线过定点B(1,3),推出AB=OB=解决问题.5、7.5【解析】【分析】先根据勾股定理建构直角三角形,利用勾股定理列拓展的一元一次方程,解方程即可.【详解】解:如图设旗杆的高度为xm,则绳长为(x+1)m,根据勾股定理得:,解方程得x=7.5m,,∴小明计算出旗杆的高度为

7.5m.故答案为7.5.【点睛】本题考查勾股定理,掌握勾股定理构图和勾股定理的应用是解题关键.6、70°【解析】【分析】根据旋转的性质可得,,再由AC⊥A'B',可得,即可求解.【详解】解:根据题意得:,,∵AC⊥A'B',∴,∴.故答案为:70°【点睛】本题主要考查了图形的旋转,直角三角形的性质熟练掌握图形旋转前后对应角相等,对应边相等,直角三角形的两锐角互余是解题的关键.7、

【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.三、解答题1、(1)10(2)6(3)4(4)5【解析】【分析】(1)根据折叠的性质即可得;(2)先根据矩形的性质可得,再根据折叠的性质可得,然后在中,利用勾股定理即可得;(3)根据即可得;(4)先根据折叠的性质可得,设,则,再在中,利用勾股定理即可得.(1)解:由折叠的性质得:,故答案为:10.(2)解:四边形是矩形,,,,由折叠的性质得:,,故答案为:6.(3)解:,,故答案为:4.(4)解:由折叠的性质得:,四边形是矩形,,设,则,在中,,即,解得,即的长为5.【点睛】本题考查了矩形与折叠问题、勾股定理等知识点,熟练掌握矩形与折叠的性质是解题关键.2、(1),,见解析(2)5千克(3)15千克【解析】【分析】(1)根据题意,可以写出两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在直角坐标系中画出图象;(2)根据题意和(1)中的函数解析式,令它们的函数值相等,求出相应的x的值即可;(3)根据题意,可以列出相应的方程,然后求解即可.(1)由题意可得,方式一:所需的邮递费用y(元)与x(千克)之间的函数关系式是y=3×2+(x−3)×1.5=1.5x+1.5,当x=4时,y=7.5,当x=5时,y=9;方式二:所需的邮递费用y(元)与x(千克)之间的函数关系式是y=x+4,当x=4时,y=8,当x=5时,y=9;它们的函数图象如图所示:(2)由题意可得:1.5x+1.5=x+4,解得x=5,答:两种付费方式所需邮递费用相同,这箱物品的质量是5千克.(3)由题意可得:(1.5x+1.5)−(x+4)=5,解得x=15,答:这箱物品的质量是15千克.【点睛】本题考查一次函数的应用、一元一次方程的应用,解答本题的关键是明确题意,写出相应的函数解析式,列出相应的方程.3、(1)①见解析;②是,25(2)【解析】【分析】(1)①利用等腰三角形的三线合一的性质证明即可;②结论:四边形CEDF的面积为定值.证明△ADE≌△CDF(ASA),可得结论;(2)当t≥10时,点E在AC的延长线上.过点D分别作DG⊥BC,DH⊥AC,垂足分别为点G,H.证明△DBF≌△DCE(ASA),推出BF=CE=t﹣10,CF=CB+BF=10+(t﹣10)=t.再根据S△DEF=S四边形DCEF﹣S△DCE,求解即可.(1)证明:(1)①∵AC=BC,点D为AB的中点,∴CD⊥AB,∵DF⊥DE,∴∠ADE+∠CDE=∠CDF+∠CDE=90°,∴∠ADE=∠CDF;②结论:四边形CEDF的面积为定值,理由如下:∵AC=BC,点D为AB的中点,∠ACB=90°,∴∠A=∠B=∠ACD=∠BCD=45°,,∴AD=BD=CD,∵∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形CEDF=S△CDE+S△CDF=S△CDE+S△ADE=S△ACD=.∴四边形CEDF的面积为定值.(2)解:当t≥10时,点E在AC的延长线上.过点D分别作DG⊥BC,DH⊥AC,垂足分别为点G,H.∵∠FDC=∠FDE+∠CDE=∠BDC+∠BDF,∴∠BDF=∠CDE.由②得:AD=BD=CD,∠ABC=∠ACD=45°,∴∠DBF=∠DCE=135°,∴△DBF≌△DCE(ASA),∴BF=CE=t﹣10,∴CF=CB+BF=10+(t﹣10)=t.∵,DG⊥BC,DH⊥AC,∴,∵AD=BD=CD,AC=BC=10,∴DG=DH=5.∵=,∴.【点睛】本题主要考查了等腰三角形的判定和性质,角平分线的性质定理,直角三角形的性质,全等三角形的判定和性质,熟练掌握相关知识点是解题的关键.4、作图见解析【解析】【分析】先作∠MAN=∠α,再在AM上截取AB=a,接着过B点作AM的垂线交AN于C,然后分别以A、C为圆心,BC、BA为半径画弧,两弧相交于D,则四边形ABCD满足条件.【详解】解:如图,矩形ABCD为所求.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定.5、(1)或;(2)【解析】【分析】(1)先移项,再合并同类项,再根据平方根的定义求解;(2)先根据立方根的定义开立方,再解方程即可求解.(1),,,或;(2),,.【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的定义.6、(1)①(2)是,理由见解析(3)或【解析】【分析】(1)根据小明的作图步骤可得由作图知△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论