




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如图,点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点.则下列说法:①若,则四边形EFGH为矩形;②若,则四边形EFGH为菱形;③若AC与BD互相垂直且相等,则四边形EFGH是正方形;④若四边形EFGH是平行四边形,则AC与BD互相平分.其中正确的个数是(
)A.1 B.2 C.3 D.42、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为(
)A.4 B.4.8 C.5 D.5.53、直线不经过第二象限,则关于的方程实数解的个数是(
).A.0个 B.1个 C.2个 D.1个或2个4、如图,D,E分别是△ABC的边AB,AC上的点,连接DE,下列条件不能判定△ADE与△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.5、下图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是()A.A B.B C.C D.D6、关于的一元二次方程的两根应为(
)A. B., C. D.二、多选题(6小题,每小题2分,共计12分)1、(多选)如图,正方形ABCD的对角线AC,BD相交于D于点O,点P为线段AC上一点,连接BP,过点P作交AD于点E,连接BE,若,,下列说法正确的有(
)A. B. C. D.2、如图,四边形ABCD为菱形,BFAC,DF交AC的延长线于点E,交BF于点3、下列说法中,正确的是(
)A.两角对应相等的两个三角形相似B.两边对应成比例的两个三角形相似C.两边对应成比例且夹角相等的两个三角形相似D.三边对应成比例的两个三角形相似4、不能说明△ABC∽△A’B’C’的条件是(
)A.或 B.且C.且 D.且5、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是(
)A.函数解析式为I= B.当R=9Ω时,I=4AC.蓄电池的电压是13V D.当I≤10A时,R≥3.6Ω6、如图,下列条件能判定△ABC与△ADE相似的是(
)A. B.∠B=∠ADE C. D.∠C=∠AED第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图所示,在中,,,.(1)如图1,四边形为的内接正方形,则正方形的边长为_________;(2)如图2,若内有并排的n个全等的正方形,它们组成的矩形内接于,则正方形的边长为_________.2、如图,AB,CD相交于O点,△AOC∽△BOD,OC:OD=1:2,AC=5,则BD的长为______.3、如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,,则_____.4、如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为xm,则根据题意,可列方程为_______.5、如果关于x的方程有两个相等的正实数根,那么m的值为____________.6、如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___
7、如图,一块飞镖游戏板由大小相等的小等边三角形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),则击中黑色区域的概率是____________.8、《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,,,EF过点A,且步,步,已知每步约40厘米,则正方形的边长约为__________米.四、解答题(6小题,每小题10分,共计60分)1、解关于y的方程:by2﹣1=y2+2.2、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根.3、如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)以原点O为位似中心,在x轴的上方画出△A1B1C1,使△A1B1C1与△ABC位似,且相似比为2;(2)△A1B1C1的面积是平方单位.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为.4、为培育和践行社会主义核心价值观,弘扬传统美德,学校决定购进相同数量的名著《平凡的世界》(简称A)和《恰同学少年》(简称B),其中A的标价比B的标价多25元,为此,学校划拨了1800元用于购买A,划拨了800元用于购买B.(1)求A、B的标价各多少元?(2)阳光书店为支持学校的读书活动,决定将A、B两本名著的标价都降低m%后卖给学校,这样,A的数量不变,B还可多买2m本,且总购书款不变,求m的值.5、定义:若一个三角形最长边是最短边的2倍,我们把这样的三角形叫做“和谐三角形”.在△ABC中,点F在边AC上,D是边BC上的一点,AB=BD,点A,D关于直线l对称,且直线l经过点F.(1)如图1,求作点F;(用直尺和圆规作图保留作图痕迹,不写作法)(2)如图2,△ABC是“和谐三角形”,三边长BC,AC,AB分别a,b,c,且满足下列两个条件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之间的等量关系;②若AE是△ABD的中线.求证:△ACE是“和谐三角形”.6、如图是由一些棱长都为的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,最多可以再添加__________块小正方体.-参考答案-一、单选题1、A【解析】【分析】先根据三角形中位线定理证明四边形EFGH是平行四边形,然后根据菱形,矩形,正方形的判定进行逐一判断即可.【详解】解:∵点E、F、G、H分别是四边形ABCD的边AB、BC、CD、DA的中点,∴EH是△ABD的中位线,∴,,同理,∴EH=GF,GH=EF,∴四边形EFGH是平行四边形,①若AC=BD,则EH=GF=GH=EF,则四边形EFGH是菱形,故①错误;②若AC⊥BD,则EF⊥EH,∴平行四边形EFGH是矩形,故②错误;③若AC与BD互相垂直且相等,结合①②的判断可知四边形EFGH是正方形,故③正确;④若四边形EFGH是平行四边形,并不能推出AC与BD互相平分,故④错误,故选A.【考点】本题主要考查了中点四边形,三角形中位线定理,熟知中点四边形的知识是解题的关键.2、B【解析】【分析】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【详解】如图,设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故选:B.【考点】本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.3、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】∵直线不经过第二象限,∴,∵方程,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.4、D【解析】【分析】根据相似三角形的判定定理逐个分析判断即可.【详解】解:∵∠ADE=∠B,∴故A能判定△ADE与△ABC相似,不符合题意;∠AED=∠C,∴故B能判定△ADE与△ABC相似,不符合题意;,∴故C能判定△ADE与△ABC相似,不符合题意;,条件未给出,不能判定△ADE与△ABC相似,故D符合题意故选D【考点】本题考查了相似三角形的判定定理,掌握相似三角形的判定定理是解题的关键.5、B【解析】【分析】主视图就是从正面看到的视图.【详解】从正面看,一层三个正方形,左侧由三层正方形.故选B【考点】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可.【详解】x2−3ax+a2=0,△=(−3a)2−4××a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.二、多选题1、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判断结论A正确;过P作PK⊥AD于K,PT⊥AB于T,证明△PKE≌△PTB(ASA),可判定结论B正确;延长KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判断结论C正确;在Rt△BPM中,BP=,可得S△PBE=BP•PE=13,可判断结论D错误.【详解】解:∵四边形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故结论A正确;过P作PK⊥AD于K,PT⊥AB于T,如图:∵四边形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故结论B正确;延长KP交BC于M,如图:∵四边形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故结论C正确;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP•PE=13,故结论D错误,故选:ABC.【考点】本题考查正方形的性质及应用,涉及全等三角形的判定与性质,等腰直角三角形的性质及应用等知识,解题的关键是作辅助线,证明△PKE≌△PTB.2、ABD【解析】【分析】根据菱形的性质、全等三角形的判定与性质、中线的性质即可依次判断.【详解】解:∵四边形ABCD为菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△CBE≌△CDE(SAS),A正确;∵BFAC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE,B正确;连接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,设S△BCE=m,∴S△ABC=S△ADC=2m,S△BOE=S△DOE=2m,∴S四边形ABDC=4m,S△BDE=4m,∵E点是DF中点∴S△BEF=S△BDE=4m,∴S△BEF=S四边形ABCD,故D正确;∵AE与DE不相等,故AE与BE不相等故C错误;故选:ABD.【考点】本题考查了全等三角形的判定和性质,菱形的性质,平行线的性质,三角形的面积的计算,正确的识别图形是解题的关键.3、ACD【解析】【分析】根据相似三角形的判定定理判断即可.【详解】A
“两角对应相等的两个三角形相似”是正确的;B
“两边对应成比例的两个三角形相似”是错误的,还需添上条件“且夹角相等”才成立;C
“两边对应成比例且夹角相等的两个三角形相似”是正确的;D
“三边对应成比例的两个三角形相似”是正确的故选:ACD【考点】本题考查了相似三角形的判定定理,做题的关键是熟练掌握相似三角形的判定定理.4、ABD【解析】【分析】根据相似三角形的判定方法求解即可.【详解】解:A、或,不能判定,符合题意;B、且,不能判定,符合题意;C、且,能判定,不符合题意;D、且,不能判定,符合题意.故选:ABD.【考点】此题考查了相似三角形的判定方法,解题的关键是熟练掌握相似三角形的判定方法.相似三角形的判定方法:两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;两角对应相等的两个三角形相似.5、BD【解析】【分析】设函数解析式为,将点(4,9)代入判断A错误;将R=9Ω代入判断B正确;由解析式判断C错误;由函数性质判断D正确.【详解】解:设函数解析式为,将点(4,9)代入,得,∴函数解析式为,故A错误;当R=9Ω时,I=4A,故B正确;蓄电池的电压是36V,故C错误;∵39>0,∴I随R的增大而减小,∴当I≤10A时,R≥3.6Ω,故D正确;故选:BD.【考点】此题考查了求反比例函数解析式,反比例函数的增减性,已知自变量求函数值的大小,正确掌握反比例函数的综合知识是解题的关键.6、BCD【解析】【分析】根据相似三角形的判断方法求解即可.【详解】解:A、,不能判定△ABC∽△ADE,不符合题意;B、∵∠B=∠ADE,∠A=∠A,∴△ABC∽△ADE,符合题意;C、∵,∠A=∠A,∴△ABC∽△ADE,符合题意;D、∵∠C=∠AED,∠A=∠A,∴△ABC∽△ADE,符合题意;故选:BCD.【考点】此题考查了相似三角形的判断方法,解题的关键是熟练掌握相似三角形的判断方法.三、填空题1、
【解析】【分析】(1)根据题意画出图形,作CN⊥AB,再根据GF∥AB,可知△CGF∽△CAB,由相似三角形的性质即可求出正方形的边长;(2)设正方形的边长是x,则过点C作CN⊥AB,垂足为N,交GF于点M,易得△CGF∽△CAB,所以,求出x值即可.【详解】解:(1)在图1中,作CN⊥AB,交GF于点M,交AB于点N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB•CN=BC•AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,设正方形边长为x,则,解得:,∴正方形DEFG的边长为;(2)如图,过点C作CN⊥AB,垂足为N,交GF于点M,设小正方形的边长为x,∵四边形GDEF为矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的边长是.【考点】本题主要考查了正方形,矩形的性质和相似三角形的性质.会利用三角形相似中的相似比来得到相关的线段之间的等量关系是解题的关键.2、10【解析】【分析】根据相似三角形的对应边的比相等列式计算即可.【详解】∵△AOC∽△BOD,∴,即,解得:BD=10.故答案为10.【考点】本题考查了相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.3、或【解析】【分析】由题意可求出,取AC中点E1,连接DE1,则DE1是△ABC的中位线,满足,进而可求此时,然后在AC上取一点E2,使得DE1=DE2,则,证明△DE1E2是等边三角形,求出E1E2=,即可得到,问题得解.【详解】解:∵D为AB中点,∴,即,取AC中点E1,连接DE1,则DE1是△ABC的中位线,此时DE1∥BC,,∴,在AC上取一点E2,使得DE1=DE2,则,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,综上,的值为:或,故答案为:或.【考点】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据进行分情况求解是解题的关键.4、(12-x)(8-x)=77【解析】【分析】道路外的四块土地拼到一起正好构成一个矩形,矩形的长和宽分别是(12-x)和(8-x),根据矩形的面积公式,列出关于道路宽的方程求解.【详解】道路的宽为x米.依题意得:(12-x)(8-x)=77,故答案为(12-x)(8-x)=77.【考点】本题考查了一元二次方程的应用,关键将四个矩形用恰当的方式拼成大矩形列出等量关系.5、4【解析】【分析】根据一元二次方程根的判别式即可求得或,再根据方程有两个相等的正实数根,可知两根之和为正数,据此即可解答.【详解】解:关于x的方程有两个相等的实数根解得或又关于x的方程有两个相等的正实数根两根之和为正数,即,解得故故答案为:4【考点】本题考查了一元二次方程根的判别式及根与系数的关系,熟练掌握和运用一元二次方程根的判别式及根与系数的关系是解决本题的关键解.6、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE∵DE:EC=3:1∴设DE=3k,EC=k,则CD=4k∵ABCD是平行四边形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1设S△BDE=3a,S△BEC=a则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19故答案为:.【考点】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.7、【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:∵总面积为9个小等边形的面积,其中阴影部分面积为3个小等边形的面积,∴飞镖落在阴影部分的概率是=,故答案为:.【考点】本题主要考查了概率求解问题,准确分析计算是解题的关键.8、112【解析】【分析】根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴,∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案为:112.【考点】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.四、解答题1、当b>1时,原方程的解为y=±;当b≤1时,原方程无实数解.【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案.【详解】解:移项得:by2﹣y2=2+1,合并同类项得:(b﹣1)y2=3,当b=1时,原方程无解;当b>1时,原方程的解为y=±;当b<1时,原方程无实数解.【考点】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论.2、证明见祥解;.【解析】【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值.【详解】证明:∵是关于的一元二次方程,,∴此方程总有两个实数根.解:∵,∴,∴,.∵方程的两个实数根都为正整数,,解得,,∴..【考点】本题考查了根的判别式,配方为平方式,根据方程的两个实数根都为正整数,列出不等式组,求出是解题的关键.3、(1)见解析;(2)28;(3)(2a,2b).【解析】【分析】(1)连接OB,延长OB到B1使得OB1=2OB,同法作出A1,C1,连接A1C1,B1C1,A1B1即可.(2)两条分割法求出三角形的面积即可.(3)利用相似三角形的性质解决问题即可.【详解】解:(1)△A1B1C1即为所求.(2)△A1B1C1的面积=4S△ABC=4×(4×5﹣×3×5﹣×1×3﹣×2×4)=28,故答案为:28.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为(2a,2b),故答案为:(2a,2b).【考点】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届湖南省邵阳县第一中学化学高二第一学期期末联考模拟试题含答案
- (2025年标准)果场投资协议书
- (2025年标准)广州合同协议书
- (2025年标准)管材合同协议书
- (2025年标准)关于分手调解协议书
- 2026届河北省保定市高一化学第一学期期中联考模拟试题含解析
- 西安长庆化工集团有限公司咸阳化学剂分公司油田助剂生产及暂存改扩建项目环境影响报告表
- 影视制作领域影视后期特效技术提升研究项目名称
- 2026届吉林省长春市吉林实验中学化学高二上期末达标测试试题含答案
- 三农村生态循环农业发展规划
- 构建专家委员会的初步方案
- DB37-T 5317-2025《旋挖成孔灌注桩施工技术规程》
- 个性化医疗决策模型-深度研究
- Oracle财务系统应付账款模块操作手册
- 体检营销话术与技巧培训
- 广东省佛山市顺德区2023-2024学年七年级(上)期末数学试卷(含答案)
- 变配电运维职业技能(中级)等级培训题库
- 矿山隐蔽致灾普查治理报告
- 实心球课件教学课件
- 玻璃体切割手术治疗2型糖尿病视网膜病变专家共识
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
评论
0/150
提交评论